
artima

Scott Meyers

Presentation Materials

The New C++
Overview of

(C++11)

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Artima Press is an imprint of Artima, Inc.
P.O. Box 305,Walnut Creek, California 94597

Copyright © 2010-2012 Scott Meyers. All rights reserved.

First version published April 5, 2010
Second version published May 6, 2010
Third version published April 24, 2011
Fourth version published October 25, 2011
Fifth version published January 6, 2012
This version published December 12, 2012
Produced in the United States of America

Cover photo by Stephan Jockel. Used with permission.

No part of this publication may be reproduced, modified, distributed, stored in a re-
trieval system, republished, displayed, or performed, for commercial or noncommer-
cial purposes or for compensation of any kind without prior written permission from
Artima, Inc.

This PDF eBook is prepared exclusively for its purchaser, who may use it for personal
purposes only, as described by the Artima eBook license (http://www.artima.com/
ebook_license.html). In addition, the purchaser may modify this PDF eBook to high-
light sections, add comments and annotations, etc., except that the “For the exclusive
use of ” text that identifies the purchaser may not be modified in any way.

All information and materials in this eBook are provided “as is” and without warranty
of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or registered
trademarks of their owners.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Last Revised: 12/12/12

Scott Meyers, Ph.D.
Software Development Consultant

http://aristeia.com
smeyers@aristeia.com

Overview of the New C++ (C++11)

These are the official notes for Scott Meyers’ training course, “Overview of the New C++ (C++11)”.
The course description is at http://www.aristeia.com/C++11.html. Licensing information is at
http://aristeia.com/Licensing/licensing.html.

Please send bug reports and improvement suggestions to smeyers@aristeia.com.

References to specific parts of the C++11 standard give section numbers and, following a slash,
paragraph numbers. Hence 3.9.1/5 refers to paragraph 5 of section 3.9.1.

In these notes, references to numbered documents preceded by N (e.g., N2973) are references to
C++ standardization documents. Such documents are available at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/.

[Comments in braces, such as this, are aimed at instructors presenting the course. All other
comments should be helpful for both instructors and people reading the notes on their own.]

[Day 1 usually ends somewhere in the discussion of the C++11 concurrency API. Day 2 usually
goes to the end of the library material.]

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 2

Overview
 Introduction
History, vocabulary, quick C++98/C++11 comparison

 Features for Everybody
auto, range-based for, lambdas, threads, etc.

 Library Enhancements
Really more features for everybody
TR1-based functionality, forward_list, unique_ptr, etc.

 Features for Class Authors
Move semantics, perfect forwarding, delegating/inheriting ctors, etc.

 Features for Library Authors
Variadic templates, decltype, alignment control, etc.

 Yet More Features

 Removed and Deprecated Features

 Further Information

This course is an overview, so there isn’t time to cover the details on most features. In
general, the features earlier in the course (the ones applicable to more programmers) get
more thorough treatments than the features later in the course.

Rvalue references aren’t listed on this page, because it’s part of move semantics.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 3

History and Vocabulary
1998: ISO C++ Standard officially adopted (“C++98”).

 776 pages.
2003: TC1 (“Technical Corrigendum 1”) published (“C++03”).

 Bug fixes for C++98.
2005: TR1 (Library “Technical Report 1”) published.

 14 likely new components for the standard library.
2009: Selected “C++0x” features became commonly availabile.
2011: C++0x ratified ⇒ “C++11”.

 1353 pages.
2012+: Various “Technical Specifications” (in lieu of TR2)
2014?: Revised C++ Standard
2017?: Revised C++ Standard

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 4

Copying vs. Moving
C++ has always supported copying object state:

 Copy constructors, copy assignment operators

C++11 adds support for requests to move object state:

Widget w1;

...

// copy w1’s state to w2
Widget w2(w1);

Widget w3;

…

// move w3’s state to w4
Widget w4(std::move(w3));

Note: w3 continues to exist in a valid state after creation of w4.

w1 w1’s state

w2 copy of w1’s state

w3 w3’s state

w4

The diagrams on this slide make up a PowerPoint animation.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 5

Copying vs. Moving
Temporary objects are prime candidates for moving:

typedef std::vector<T> TVec;

TVec createTVec(); // factory function

TVec vt;
…
vt = createTVec(); // in C++98, copy return value to

// vt, then destroy return value

createTVec
TVec

T T T … T T T

vt

T T T … T T T

The diagrams on this slide make up a PowerPoint animation.

In this discussion, I use a container of T, rather than specifying a particular type, e.g.,
container of string or container of int. The motivation for move semantics is largely
independent of the types involved, although the larger and more expensive the types are
to copy, the stronger the case for moving over copying.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 6

Copying vs. Moving
C++11 generally turns such copy operations into move requests:

TVec vt;
…
vt = createTVec(); // implicit move request in C++11

createTVec
TVec

T T T … T T T

vt

The diagrams on this slide make up a PowerPoint animation.

C++11 “generally” turns copy operations on rvalues into move operations, but not always.
Some operations (e.g., std::vector::push_back) offer the strong exception-safety guarantee,
so moving can replace copying only if the move operations are known not to throw (e.g.,
by declaring them noexcept). Moving a container (such as in the example on this slide)
requires that the container’s allocator be movable, which need not be the case. If the
allocator is not movable, the elements of the container must be individually copied, unless
the element type’s move constructor is known not to throw, in which case they may be
moved.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 7

Copying vs. Moving
Move semantics examined in detail later, but:

Moving a key new C++11 idea.
Usually an optimization of copying.

Most standard types in C++11 are move-enabled.
They support move requests.
E.g., STL containers.

 Some types are move-only:
Copying prohibited, but moving is allowed.
E.g., stream objects, std::thread objects, std::unique_ptr, etc.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 8

Sample C++98 vs. C++11 Program
List the 20 most common words in a set of text files.
countWords Alice_in_Wonderland.txt War_and_Peace.txt

Dracula.txt The_Kama_Sutra.txt The_Iliad.txt

70544 words found. Most common:
the 58272
and 34111
of 27066
to 26992
a 16937
in 14711
his 12615
he 11261
that 11059
was 9861
with 9780
I 8663
had 6737
as 6714
not 6608
her 6446
is 6277
at 6202
on 5981
for 5801

The data shown is from the plain text versions of the listed books as downloaded from
Project Gutenberg (http://www.gutenberg.org/).

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 9

Counting Words Across Files: C++98
#include <cstdio> // easier than iostream for formatted output
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <map>

typedef std::map<std::string, std::size_t> WordCountMapType;

WordCountMapType wordsInFile(const char * const fileName) // for each word
{ // in file, return

std::ifstream file(fileName); // # of
WordCountMapType wordCounts; // occurrences

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

It would be better software engineering to have wordsInFile check the file name for validity
and then call another function (e.g., "wordsInStream") to do the actual counting, but the
resulting code gets a bit more complicated in the serial case (C++98) and yet more
complicated in the concurrent case (C++11), so to keep this example program simple and
focused on C++11 features, we assume that every passed file name is legitimate, i.e., we
embrace the "nothing could possibly go wrong" assumption.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 10

Counting Words Across Files: C++98
struct Ptr2Pair2ndGT { // compare 2nd

template<typename It> // components of
bool operator()(It it1, It it2) const { return it1->second > it2->second; } // pointed-to pairs

};

template<typename MapIt> // print n most
void showCommonWords(MapIt begin, MapIt end, const std::size_t n) // common words
{ // in [begin, end)

typedef std::vector<MapIt> TempContainerType;
typedef typename TempContainerType::iterator IterType;

TempContainerType wordIters;
wordIters.reserve(std::distance(begin, end));
for (MapIt i = begin; i != end; ++i) wordIters.push_back(i);

IterType sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd, wordIters.end(), Ptr2Pair2ndGT());

for (IterType it = wordIters.begin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10u\n", (*it)->first.c_str(), (*it)->second);
}

}

Using range initialization for wordIters (i.e., “TempContainerType wordIters(begin, end);”)
would be incorrect, because we want wordIters to hold the iterators themselves, not what
they point to.

The use of “%u” to print an object of type std::size_t is technically incorrect, because there
is no guarantee that std::size_t is of type unsigned. (It could be e.g., unsigned long.) The
technically portable solution is probably to use the “%lu” format specifier and to cast (it*)-
>second to unsigned long (or to replace use of printf with iostreams), but I’m taking the
lazy way out and ignoring the issue. Except in this note :-)

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 11

Counting Words Across Files: C++98
int main(int argc, const char** argv) // take list of file names on command line,
{ // print 20 most common words within

WordCountMapType wordCounts;

for (int argNum = 1; argNum < argc; ++argNum) {
const WordCountMapType wordCountInfoForFile = // copy map returned by

wordsInFile(argv[argNum]); // wordsInFile (modulo
// compiler optimization)

for (WordCountMapType::const_iterator i = wordCountInfoForFile.begin();
i != wordCountInfoForFile.end();
++i) {

wordCounts[i->first] += i->second;
}

}

std::cout << wordCounts.size() << " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(), maxWordsToShow));
}

wordCountInfoForFile is initialized by copy constructor, which, because
WordCountMapType is a map holding strings, could be quite expensive. Because this is an
initialization (rather than an assignment), compilers may optimize the copy operation
away.

Technically, maxWordsToShow should be of type WordCountMapType::size_type instead
of std::size_t, because there is no guarantee that these are the same type (and if they are
not, the call to std::min likely won’t compile), but I am unaware of any implementations
where they are different types, and using the officially correct form causes formatting
problems in the side-by-side program comparison coming up in a few slides, so I’m
cutting a corner here.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 12

Counting Words Across Files: C++11
#include <cstdio>
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <future>

using WordCountMapType = std::unordered_map<std::string, std::size_t>;

WordCountMapType wordsInFile(const char * const fileName) // for each word
{ // in file, return

std::ifstream file(fileName); // # of
WordCountMapType wordCounts; // occurrences

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 13

Counting Words Across Files: C++11
struct Ptr2Pair2ndGT {

template<typename It>
bool operator()(It it1, It it2) const { return it1->second > it2->second; }

};

template<typename MapIt> // print n most
void showCommonWords(MapIt begin, MapIt end, const std::size_t n) // common words
{ // in [begin, end)

typedef std::vector<MapIt> TempContainerType;
typedef typename TempContainerType::iterator IterType;

std::vector<MapIt> wordIters;
wordIters.reserve(std::distance(begin, end));
for (auto i = begin; i != end; ++i) wordIters.push_back(i);

auto sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd, wordIters.end(),
[](MapIt it1, MapIt it2){ return it1->second > it2->second; });

for (auto it = wordIters.cbegin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10zu\n", (*it)->first.c_str(), (*it)->second);
}

}

sortedRangeEnd is initialized with the result of an expression using begin, not cbegin,
because sortedRangeEnd will later be passed to partial_sort, and partial_sort instantiation
will fail with a mixture of iterators and const_iterators. The begin and end iterators in that
call must be iterators (not const_iterators), because partial_sort will be moving things
around.

%z is a format specifier (added in C99). Followed by u, it correctly prints variables of type
size_t.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 14

Counting Words Across Files: C++11
int main(int argc, const char** argv) // take list of file names on command line,
{ // print 20 most common words within;

// process files concurrently

std::vector<std::future<WordCountMapType>> futures;

for (int argNum = 1; argNum < argc; ++argNum) {
futures.push_back(std::async([=]{ return wordsInFile(argv[argNum]); }));

}

WordCountMapType wordCounts;
for (auto& f : futures) {

const auto wordCountInfoForFile = f.get(); // move map returned by wordsInFile

for (const auto& wordInfo : wordCountInfoForFile) {
wordCounts[wordInfo.first] += wordInfo.second;

}
}

std::cout << wordCounts.size() << " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(), maxWordsToShow));
}

This code has the main thread wait for each file to be processed on a separate thread rather
than processing one of the files itself. That’s just to keep the example simple.

wordCountInfoForFile can be eliminated by writing the subsequent for loop as follows:
for (const auto& wordinfo: f.get()) {
... // as above

This is more efficient (the move into wordCountInfoForFile is eliminated), and it requires
less source code. To be fair, however, the corresponding C++98 code would declare
wordCountInfoForFile to be a reference, which I’d expect would yield object code just as
efficient as the use of f.get() in the range-based for above. The code I currently show has
the advantage that it facilitates discussion of how a copy can silently become a move, and
it requires no knowledge of how binding a by-value function return value to a reference
prolongs the lifetime of the returned object.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 15

Comparison
#include <cstdio>
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <map>

typedef std::map<std::string, std::size_t>
WordCountMapType;

WordCountMapType
wordsInFile(const char * const fileName)
{

std::ifstream file(fileName);
WordCountMapType wordCounts;

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

#include <cstdio>
#include <iostream>
#include <iterator>
#include <string>
#include <fstream>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <future>

using WordCountMapType =
std::unordered_map<std::string, std::size_t>;

WordCountMapType
wordsInFile(const char * const fileName)
{

std::ifstream file(fileName);
WordCountMapType wordCounts;

for (std::string word; file >> word;) {
++wordCounts[word];

}

return wordCounts;
}

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 16

Comparison
struct Ptr2Pair2ndGT {

template<typename It>
bool operator()(It it1, It it2) const
{ return it1->second > it2->second; }

};

template<typename MapIt>
void showCommonWords(MapIt begin, MapIt end,

const std::size_t n)
{

typedef std::vector<MapIt> TempContainerType;
typedef typename TempContainerType::iterator IterType;

TempContainerType wordIters;
wordIters.reserve(std::distance(begin, end));
for (MapIt i = begin; i != end; ++i) wordIters.push_back(i);

IterType sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd,
wordIters.end(), Ptr2Pair2ndGT());

for (IterType it = wordIters.begin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10u\n", (*it)->first.c_str(),
(*it)->second);

}
}

template<typename MapIt>
void showCommonWords(MapIt begin, MapIt end,

const std::size_t n)
{

std::vector<MapIt> wordIters;
wordIters.reserve(std::distance(begin, end));
for (auto i = begin; i != end; ++i) wordIters.push_back(i);

auto sortedRangeEnd = wordIters.begin() + n;

std::partial_sort(wordIters.begin(), sortedRangeEnd,
wordIters.end(),
[](MapIt it1, MapIt it2)
{ return it1->second > it2->second; });

for (auto it = wordIters.cbegin();
it != sortedRangeEnd;
++it) {

std::printf(" %-10s%10zu\n", (*it)->first.c_str(),
(*it)->second);

}
}

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 17

Comparison
int main(int argc, const char** argv)
{

WordCountMapType wordCounts;

for (int argNum = 1; argNum < argc; ++argNum) {

const WordCountMapType wordCountInfoForFile =
wordsInFile(argv[argNum]);

for (WordCountMapType::const_iterator i =
wordCountInfoForFile.begin();

i != wordCountInfoForFile.end();
++i) {

wordCounts[i->first] += i->second;
}

}

std::cout << wordCounts.size()
<< " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(),
maxWordsToShow));

}

int main(int argc, const char** argv)
{

std::vector<std::future<WordCountMapType>> futures;

for (int argNum = 1; argNum < argc; ++argNum) {
futures.push_back(

std::async([=]{ return wordsInFile(argv[argNum]); })
);

}

WordCountMapType wordCounts;
for (auto& f : futures) {

const auto wordCountInfoForFile =
f.get();

for (const auto& wordInfo : wordCountInfoForFile) {

wordCounts[wordInfo.first] += wordInfo.second;
}

}

std::cout << wordCounts.size()
<< " words found. Most common:\n" ;

const std::size_t maxWordsToShow = 20;
showCommonWords(wordCounts.begin(), wordCounts.end(),

std::min(wordCounts.size(),
maxWordsToShow));

}

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 18

Overview
 Introduction

 Features for Everybody

 Library Enhancements

 Features for Class Authors

 Features for Library Authors

 Yet More Features

 Further Information

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 19

“>>”as Nested Template Closer
“>>” now closes a nested template when possible:

std::vector<std::list<int>> vi1; // fine in C++11, error in C++98

The C++98 “extra space” approach remains valid:
std::vector<std::list<int> > vi2; // fine in C++11 and C++98

For a shift operation, use parentheses:

 I.e., “>>” now treated like “>” during template parsing.
const int n = … ; // n, m are compile-
const int m = … ; // time constants

std::list<std::array<int, n>>2 >> L1; // error in C++98: 2 shifts;
// error in C++11: 1st “>>”
// closes both templates

std::list<std::array<int, (n>>2) >> L2; // fine in C++11,
// error in C++98 (2 shifts)

[std::array has not yet been introduced.]

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 20

auto for Type Declarations
auto variables have the type of their initializing expression:

auto x1 = 10; // x1: int

std::map<int, std::string> m;
auto i1 = m.begin(); // i1: std::map<int, std::string>::iterator

const/volatile and reference/pointer adornments may be added:
const auto *x2 = &x1; // x2: const int*

const auto& i2 = m; // i2: const std::map<int, std::string>&

To get a const_iterator, use the new cbegin container function:
auto ci = m.cbegin(); // ci: std::map<int, std::string>::const_iterator

 cend, crbegin, and crend exist, too.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 21

auto for Type Declarations
Type deduction for auto is akin to that for template parameters:

template<typename T> void f(T t);
…
f(expr); // deduce t’s type from expr

auto v = expr; // do essentially the same thing for v’s type

Rules governing auto are specified in 7.1.6.4 of C++11.

As noted in the treatment of std::initializer_lists, the only way that auto type deduction
differs from template parameter type deduction is when deducing a type from a braced
initializer list. auto deduces “{ x, y, z }” to be a std::initializer_list<T> (where T is the type of
x, y, and z), but template parameter deduction fails. (It’s a “non-deduced context.”)

As noted in the discussion on rvalue references, the fact that auto uses the type deduction
rules for templates means that variables of type auto&& may, after reference collapsing,
turn out to be lvalue references:

int x;

auto&& a1 = x; // x is lvalue, so type of a1 is int&

auto&& a2 = std::move(x); // std::move(x) is rvalue, so type of a2 is int&&

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 22

auto for Type Declarations
For variables not explicitly declared to be a reference:
 Top-level consts/volatiles in the initializing type are ignored.
 Array and function names in initializing types decay to pointers.

const std::list<int> li;
auto v1 = li; // v1: std::list<int>
auto& v2 = li; // v2: const std::list<int>&
float data[BufSize];
auto v3 = data; // v3: float*
auto& v4 = data; // v4: float (&)[BufSize]

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 23

auto for Type Declarations
Examples from earlier:

auto x1 = 10; // x1: int
std::map<int, std::string> m;
auto i1 = m.begin(); // i1: std::map<int, std::string>::iterator
const auto *x2 = &x1; // x2: const int* (const isn’t top-level)
const auto& i2 = m; // i2: const std::map<int, std::string>&
auto ci = m.cbegin(); // ci: std::map<int, std::string>::const_iterator

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 24

auto for Type Declarations
Both direct and copy initialization syntaxes are permitted.

auto v1(expr); // direct initialization syntax

auto v2 = expr; // copy initialization syntax

For auto, both syntaxes have the same meaning.

The fact that in ordinary initializations, direct initialization syntax can call explicit
constructors and copy initialization syntax cannot is irrelevant, because no conversion is at
issue here: the type of the initializing expression will determine what type auto deduces.

Technically, if the type of the initializing expression has an explicit copy constructor, only
direct initialization is permitted. From Daniel Krügler:

struct Explicit {
Explicit(){}
explicit Explicit(const Explicit&){}

} ex;

auto ex2 = ex; // Error

auto ex3(ex); // OK

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 25

Range-Based for Loops
Looping over a container can take this streamlined form:

std::vector<int> v;
…
for (int i : v) std::cout << i; // iteratively set i to every

// element in v

The iterating variable may also be a reference:
for (int& i : v) std::cout << ++i; // increment and print

// everything in v

auto, const, and volatile are allowed:
for (auto i : v) std::cout << i; // same as above

for (auto& i : v) std::cout << ++i; // ditto

for (volatile int i : v) someOtherFunc(i); // or "volatile auto i"

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 26

Range-Based for Loops
Valid for any type supporting the notion of a range.

 Given object obj of type T,
obj.begin() and obj.end() or begin(obj) and end(obj) are valid.

Includes:

 All C++11 library containers.

 Arrays and valarrays.

 Initializer lists.

 Any UDT T where T.begin() and T.end() or begin(T) and end(T)
yield suitable iterators.

[Initializer lists and regular expressions have not yet been introduced.]

“UDT” = “User Defined Type”.

Per 6.5.4/1, if a type supports both member begin/end and non-member begin/end, ranges
use the member versions. If a type has either begin or end as a member, no non-member
will be searched for, so a pathological class offering, e.g., member begin but no member
end will not be usable in a range-based for.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 27

Range-Based for Loops
Examples:

std::unordered_multiset<std::shared_ptr<Widget>> msspw;
…

for (const auto& p : msspw) {
std::cout << p << '\n'; // print pointer value

}

short vals[ArraySize];
…
for (auto& v : vals) { v = -v; }

[unordered_multiset and shared_ptr have not yet been introduced.]

The loop variable p is declared a reference, because copying the shared_ptrs in msspw
would cause otherwise unnecessary reference count manipulations, which could have a
performance impact in multi-threaded code (or even in single-threaded code where
shared_ptr uses thread-safe reference count increments/decrements).

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 28

Range-Based for Loops
Range form valid only for for-loops.

Not do-loops, not while-loops.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 29

nullptr
A new keyword. Indicates a null pointer.

 Convertible to any pointer type and to bool, but nothing else.
Can’t be used as an integral value.

const char *p = nullptr; // p is null

if (p) … // code compiles, test fails

int i = nullptr; // error!

Traditional uses of 0 and NULL remain valid:
int *p1 = nullptr; // p1 is null
int *p2 = 0; // p2 is null
int *p3 = NULL; // p3 is null

if (p1 == p2 && p1 == p3) … // code compiles, test succeeds

The term “keyword” is stronger than “reserved word.” Keywords are unconditionally
reserved (except as attribute names, sigh), while, e.g., “main” is reserved only when used
as the name of a function at global scope.

The type of nullptr is std::nullptr_t. Other pointer types may be cast to this type via
static_cast (or C-style cast). The result is always a null pointer.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 30

nullptr
Only nullptr is unambiguously a pointer:

void f(int *ptr); // overloading on ptr and int
void f(int val);

f(nullptr); // calls f(int*)

f(0); // calls f(int)

f(NULL); // probably calls f(int)

 The last call compiles unless NULL isn’t defined to be 0
E.g., it could be defined to be 0L.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 31

nullptr
Unlike 0 and NULL, nullptr works well with forwarding templates:

template<typename F, typename P> // make log entry, then
void logAndCall(F func, P param) // invoke func on param
{

… // write log entry
func(param);

}

void f(int* p); // some function to call

f(0); // fine
f(nullptr); // also fine

logAndCall(f, 0); // error! P deduced as
// int, and f(int) invalid

logAndCall(f, NULL); // error!

logAndCall(f, nullptr); // fine, P deduced as
// std::nullptr_t, and
// f(std::nullptr_t) is okay

Normally, logAndCall would employ perfect forwarding, but because neither rvalue
references nor std::forward have yet been introduced, I'm using pass-by-value here for both
func and param.

nullptr thus meshes with C++11’s support for perfect forwarding, which is mentioned later
in the course.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 32

Enhanced enums
Specification of underlying type now permitted:

enum Color: unsigned int { red, green, blue };

enum Weather: std::uint8_t { sunny, rainy, cloudy, foggy };

Values must fit in specified type:
enum Status: std::uint8_t { pending,

ready,
unknown = 9999 }; // error!

Type specification is optional:
enum Color { red, green, blue }; // fine, same

// meaning as in
// C++98

The underlying type for an enum is always available via
std::underlying_type<enumtype>::type. The underlying type for either of the Color
definitions on this page, for example, is std::underlying_type<Color>::type.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 33

enum Classes
“Strongly typed enums:”
No implicit conversion to int.
No comparing enum class values with ints.
No comparing enum class objects of different types.
Explicit cast to int (or types convertible from int) okay.
 Values scoped to enum class type.
 Underlying type defaults to int.

enum class Elevation: char { low, high }; // underlying type = char

enum class Voltage { low, high }; // underlying type = int

Elevation e = low; // error! no “low” in scope

Elevation e = Elevation::low; // fine

int x = Voltage::high; // error!

if (e) ... // error!

if (e == Voltage::high) ... // error!

“Normal” enums may use scope-qualified access, but enumerant names are still visible in
the declaring scope:

enum Color { red, green, blue }; // “normal” enum

int x = Color::red; // fine, scope-qualified access

int y = red; // also fine (as in C++98)

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 34

Forward-Declaring enums
enums of known size may be forward-declared:

enum Color; // as in C++98,
// error!: size unknown

enum Weather: std::uint8_t; // fine

enum class Elevation; // fine, underlying type
// implicitly int

double atmosphericPressure(Elevation e); // fine

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 35

Unicode Support
Two new character types:

char16_t // 16-bit character (if available);
// akin to uint_least16_t

char32_t // 32-bit character (if available);
// akin to uint_least32_t

Literals of these types prefixed with u/U, are UCS-encoded:
u'x' // 'x' as a char16_t using UCS-2

U'x' // 'x' as a char32_t using UCS-4/UTF-32

C++98 character types still exist, of course:
'x' // 'x' as a char

L'x' // 'x' as a wchar_t

From 3.9.1/5 in C++11: “Types char16_t and char32_t denote distinct types with the same
size, signedness, and alignment as uint_least16_t and uint_least32_t, respectively, in
<stdint.h>, called the underlying types.”

UCS-2 is a 16-bit/character encoding that matches the entries in the Basic Multilingual
Plane (BMP) of UTF-16. UTF-16 can use surrogate pairs to represent code points outside
the BMP. UCS-2 cannot. UCS-4 and UTF-32 are essentially identical.

char16_t character literals can represent only UCS-2, because it’s not possible to fit a UTF-
16 surrogate pair (i.e., two 16-bit values) in a single char16_t object. Notes C++11 2.14.3/2,
“A character literal that begins with the letter u, such as u’y’, is a character literal of type
char16_t. ... If the value is not representable within 16 bits, the program is ill-formed.”

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 36

Unicode Support
There are corresponding string literals:

u"UTF-16 string literal" // ⇒ char16_ts in UTF-16

U"UTF-32 string literal" // ⇒ char32_ts in UTF-32/UCS-4

"Ordinary/narrow string literal" // "ordinary/narrow" ⇒ chars

L"Wide string literal" // "wide" ⇒ wchar_ts

UTF-8 string literals are also supported:
u8"UTF-8 string literal" // ⇒ chars in UTF-8

Code points can be specified via \unnnn and \Unnnnnnnn:
u8"G clef: \U0001D11E" // G
u"Thai character Khomut: \u0E5B" // ๛
U"Skull and crossbones: \u2620" // ☠

A code point is a specific member of the Unicode character space. Not all Unicode characters correspond to
a single code point. Per http://cppwhispers.blogspot.com/2012/11/unicode-and-your-application-1-of-
n.html, “the standard defines code-point sequences that can result in a single character. For example, a code-
point followed by an accent code-point will eventually result in an accented character.”

UTF-8 and UTF-16 are multibyte encodings. UCS-n and UTF-32 are fixed-size encodings. All except UCS-2
can represent every code point. UTF-8, UTF-16, and UCS-4/UTF-32 are defined by both ISO 10646 and the
Unicode standard. Per the Unicode FAQ (http://unicode.org/faq/unicode_iso.html), “Although the character
codes and encoding forms are synchronized between Unicode and ISO/IEC 10646, the Unicode Standard
imposes additional constraints on implementations to ensure that they treat characters uniformly across
platforms and applications. To this end, it supplies an extensive set of functional character specifications,
character data, algorithms and substantial background material that is not in ISO/IEC 10646.”

u-qualified character literals may not yield UTF-16 surrogate pairs, but characters in u-qualified string literals
may apparently be surrogate pairs. Per 2.14.5/9, “A char16_t string literal ... is initialized with the given
characters. A single c-char may produce more than one char16_t character in the form of surrogate pairs..”

The results of appending string literals of different types (if supported) are implementation-defined:

u8"abc" "def" u"ghi" // implementation-defined results

[The characters corresponding to the code points in the examples on the bottom of the page are present in
the comments, but, because they don't display property on all machines (presumably due to variations in the
fonts installed), I've superimposed an image showing the same characters on top of the comments. To see if
the characters display properly on your machine, move or delete the image.]

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 37

Unicode Support
There are std::basic_string typedefs for all character types:

std::string s1; // std::basic_string<char>

std::wstring s2; // std::basic_string<wchar_t>

std::u16string s3; // std::basic_string<char16_t>

std::u32string s4; // std::basic_string<char32_t>

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 38

Conversions Among Encodings
C++98 guarantees only two codecvt facets:

 char ⇄ char (std::codecvt<char, char, std::mbstate_t>)
“Degenerate” – no conversion performed.

 wchar_t ⇄ char (std::codecvt<wchar_t, char, std::mbstate_t>)

C++11 adds:

 UTF-16 ⇄ UTF-8 (std::codecvt<char16_t, char, std::mbstate_t>)

 UTF-32 ⇄ UTF-8 (std::codecvt<char32_t, char, std::mbstate_t>)

 UTF-8 ⇄ UCS-2, UTF-8 ⇄ UCS-4 (std::codecvt_utf8)

 UTF-16 ⇄ UCS-2, UTF-16 ⇄ UCS-4 (std::codecvt_utf16)

 UTF-8 ⇄ UTF-16 (std::codecvt_utf8_utf16)
Behaves like std::codecvt<char16_t, char, std::mbstate_t>.

The “degenerate” char ⇄ char conversion allows for code to be written that always pipes
things through a codecvt facet, even in the (common) case where no conversion is needed.
Such behavior is essentially mandated for std::basic_filebuf in both C++98 and C++11.

P.J. Plauger, who proposed codecvt_utf8_utf16 for C++11, explains the two seemingly
redundant UTF-16 ⇄ UTF-8 conversion instantiations: “The etymologies of the two are
different. There should be no behavioral difference.”

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 39

Conversions Among Encodings
C++98 supports only IO-based conversions.

 Designed for multibyte external strings ⇄ wide internal strings.

 Requires changing locale associated with stream.

New in C++11:

 std::wbuffer_convert does IO-based encoding conversions w/o
changing stream locale.

 std::wstring_convert does in-memory encoding conversions.
E.g., std::u16string/std::u32string ⇒ std::string.

Usage details esoteric, hence omitted in this overview.

Changing the locale associated with a stream is accomplished via the imbue member
function, which is a part of several standard iostream classes, e.g., std::ios_base.

Among the esoteric details are that the existence of a protected destructor in template
std::codecvt implies that none of its instantiations – i.e., none of the standard facets -- work
with std::wbuffer_convert and std::wstring_convert. Instead, it’s expected that types
derived from std::codecvt (e.g., from a standard facet) will be used. Standard library types
satisfying this expectation are std::codecvt_utf8, std::codecvt_utf16, and
std::codecvt_utf8_utf16.

More information regarding use of standard facets with std::wbuffer_convert and
std::wstring_convert is in the comp.std.c++ thread at http://tinyurl.com/ykup5qe.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 40

Raw String Literals
String literals where “special” characters aren’t special:

 E.g., escaped characters and double quotes:
std::string noNewlines(R"(\n\n)");

std::string cmd(R"(ls /home/docs | grep ".pdf")");

 E.g., newlines:
std::string withNewlines(R"(Line 1 of the string...

Line 2...
Line 3)");

“Rawness” may be added to any string encoding:
LR"(Raw Wide string literal \t (without a tab))"

u8R"(Raw UTF-8 string literal \n (without a newline))"

uR"(Raw UTF-16 string literal \\ (with two backslashes))"

UR"(Raw UTF-32 string literal \u2620 (w/o a skull & crossbones))"

“R” must be upper case and must come after “u8”, “u”, “U”, etc. It can't be placed in front
of those specifiers.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

Overview of the New C++ (C++11)

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 41

Raw String Literals
Raw text delimiters may be customized:

 Useful when)" is in raw text, e.g., in regular expressions:
std::regex re1(R"!("operator\(\)"|"operator->")!"); // "operator()"|

// "operator->"

std::regex re2(R"xyzzy("\([A-Za-z_]\w*\)")xyzzy"); // "(identifier)"

Green text shows what would be interpreted as closing the raw string if the default raw
text delimiters were being used.

Custom delimiter text (e.g., xyzzy in re2's initializer) must be no more than 16 characters in
length and may not contain whitespace.

The backslashes in front of the parentheses inside the regular expressions are to prevent
them from being interpreted as demarcating capture groups.

\w means a word character (i.e., letter, digit, or underscore).

Click here to purchase the complete PDF document!

http://www.artima.com/shop/overview_of_the_new_cpp

