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C++ and Beyond
Snoqualmie, Washington, USA

October 24-27, 2010

Schedule

Welcome [Andrei]

Break Break Break

Break Break
Break

Sunday Monday Tuesday Wednesday

Group Breakfast
[Attic]

Ask us anything...live!
[Panel]

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Elements of Design, Part 1
[Herb]

CAS-Based Concurrency
[Andrei]

Ask us anything...in advance
[Panel]

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Points and Counterpoints
[Panel]

Lambdas, Lambdas, 
Everywhere

[Herb]

A Fresh Look at Containers 
and Iterators

[Andrei]

Move Semantics, Rvalue 
References, and Perfect 

Forwarding, Part 2
[Scott]

Move Semantics, Rvalue 
References, and Perfect 

Forwarding, Part 1
[Scott]

CPU Caches and
Why You Care

[Scott]

Elements of Design, Part 2
[Herb]

Reception
[Ballroom]

Informal Discussions
[Falls Terrace & Ballroom]

Informal Discussions
[Falls Terrace & Ballroom]

Super Size Me: Lessons 
Learned Working at a Web 

Company
[Andrei]

Free Time
(No Official C&B-Related Activities)

7:30 - 9:30

8:00 - 9:00

9:00 - 10:30

10:45 - 12:00

12:00 - 2:30

2:30 - 3:45

4:00 - 5:00

5:00 - 7:30
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Break Break Break

Scalable Use of the STL
[Andrei]

Group Lunch
and
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Super Size Me: Lessons 
Learned Working at a Web 

Company
[Andrei]

Monday Tuesday Wednesday Thursday

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Move Semantics, Rvalue 
References, and Perfect 

Forwarding, Part 1
[Scott]

Elements of Design, Part 1
[Herb]

Move Semantics, Rvalue 
References, and Perfect 

Forwarding, Part 2
[Scott]

CPU Caches and
Why You Care

[Scott]

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Elements of Design, Part 2
[Herb]

Reception
[Falls Terrace]

Informal Discussions
[Falls Terrace]

Informal Discussions
[Falls Terrace]

Free Time
(No Official C&B-Related Activities)

Lambdas, Lambdas, 
Everywhere

[Herb]

Q&A
[Andrei, Scott, Herb]

Q&A
[Herb, Andrei, Scott]

CAS-Based Concurrency
[Andrei]

Informal C++0x Feature 
Overview

[Scott, Herb, Andrei]

8:00 - 8:45

2:30 - 4:00

7:30 - 9:30

9:00 - 10:30

10:45 - 12:00

12:00 - 2:30

5:00 - 7:30

4:15 - 5:00
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C++0x�Warning

Some�examples�show�C++0x�features�unrelated�to�move�semantics.

I’m�sorry�about�that.

But�not�that�sorry�:�)
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Move�Support
C++�sometimes�performs�unnecessary�copying:

typedef std::vector<T> TVec;
TVec createTVec(); // factory function
TVec vt;
…
vt = createTVec(); // copy return value object to vt,

// then destroy return value object

createTVec
TVec

T T T … T T T

vt

T T T … T T T
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Move�Support
Moving values�would�be�cheaper:

TVec vt;
…
vt = createTVec(); // move data in return value object

// to vt, then destroy return value 
// object

createTVec
TVec

T T T … T T T

vt
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Move�Support
Appending�to�a�full�vector causes�much�copying�before�the�append:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks 

// unused capacity
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Move�Support
Again,�moving�would�be�more�efficient:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks 

// unused capacity

Other�vector and�deque operations�could�similarly�benefit.

� insert,�emplace,�resize,�erase,�etc.
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Move�Support
Still�another�example:

template<typename T> // straightforward std::swap impl. 
void swap(T& a, T& b)
{

T tmp(a); // copy a to tmp ( 2 copies of a)
a = b; // copy b to a ( 2 copies of b)
b = tmp; // copy tmp to b ( 2 copies of tmp)

} // destroy tmp

a

b

tmp copy of a’s state

a’s state

b’s state

copy of b’s state

copy of a’s state
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Move�Support
template<typename T> // straightforward std::swap impl. 
void swap(T& a, T& b)
{

T tmp(std::move(a)); // move a’s data to tmp
a = std::move(b); // move b’s data to a
b = std::move(tmp); // move tmp’s data to b

} // destroy (eviscerated) tmp

a

b

tmpa’s state

b’s state
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Herb Sutter 

industrial design applies to 
industrial software 
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1. Process 

2. Principles 

3. Elements 

What do you think of this code? 

CustomContainer<T> c; 

for( auto i = src.begin(); i != src.end(); ++i ) { 
  c.insert( *i ); 
} 

 

 

CustomMap<string,string> phone; 

phone*“John”+ = “212-555-1212”;  // inserts into map 

phone.Insert( “John”, “212-555-1212” ); // inserts into map 
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Design for the user 

Design For the User 

 Guiding star: What the consuming code looks like. 

 Start of design: First, write some of the calling code. 

 During design: Rinse and repeat. 

 

 Key goals: 

 Applicability: Solving an actual user’s problem. 

 Usability: Being understandable, discoverable. 

 

 Why it’s difficult: 

 You’re not him/her (nearly always). 
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Pitfall: Avoid “Expert-Friendly” Design 

 Easy to say. 

 (Blush.) 

 

 C++0x example: Metaprogramming extensions vs. “auto.” 

 Which would you be most interested in spending time 
designing? 

 Which would most programmers be most interested in using 
(applicability) and able to understand (usability)? 

 

 Why it’s difficult: 

 You’re an expert. 

Aim to enable  
“what,” not “how” 
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CAS-Based Concurrency
Prepared for C++ and Beyond 2010

Andrei Alexandrescu, PhD

andrei@erdani.com

This Talk
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• Lock-free programming: Brief history

and introduction

• CAS-based code

• A Singly-Linked Lock-Free List
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Motto
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“Multithreading is just one darn thing

after, before, or simultaneously with

another”.

Lock-free Programming:

Brief History and

Introduction
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Defining Terms
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• Wait-free procedure: completes in a bounded

number of steps regardless of the relative

speeds of other threads

• Lock-free procedure: at any time, at least one

thread is guaranteed to make progress

◦ Probabilistically, all threads will finish

timely

• Mutex-based procedures

◦ Not wait-free

◦ Not lock-free

A Different Angle
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• Lock-based: ask for synchronization device

prior to operation

• Pessimistically assumes contention

• Wait/Lock-free: Perform operation, attempt to

commit

• Optimistically assumes no contention

• “Better ask for forgiveness than permission”
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Brief History
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• Lock-based threading theory established in

the 1960s

◦ Still the dominant model today

• By 1972—efforts to avoid mutex-based

pessimistic concurrency control

◦ Atomic assignment

◦ Use of atomic instructions: increment,

test-and-set

• By 1990—search for universal atomic

primitive that would enable all others

• 1991: “Wait-free synchronization” by Herlihy

settles the matter

Impossibility/Universality
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• Some primitives cannot synchronize any

shared data structure for >2 threads

◦ test-and-set

◦ fetch-and-add

◦ atomic queues!

• Some other primitives are enough to

implement any shared data structure

◦ e.g., CAS
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