
Image: NASA
artima

Sample
Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

C++ and Beyond 2010 Sample

Thank you for downloading this sample from the official presentation materials for
the C++ and Beyond 2010 event, presented by Scott Meyers, Herb Sutter, and An-
drei Alexandrescu. If you’d like to purchase the complete copy of these materials,
please visit:

http://www.artima.com/shop/cpp_and_beyond_2010

Artima Press is an imprint of Artima, Inc.
P.O. Box 305, Walnut Creek, California 94597

Copyright © 2011 Scott Meyers, Herb Sutter, Andrei Alexandrescu.
All rights reserved.

All information and materials in this document are provided “as is” and without war-
ranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or regis-
tered trademarks of their owners.

C++ and Beyond
Snoqualmie, Washington, USA

October 24-27, 2010

Schedule

Welcome [Andrei]

Break Break Break

Break Break
Break

Sunday Monday Tuesday Wednesday

Group Breakfast
[Attic]

Ask us anything...live!
[Panel]

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Elements of Design, Part 1
[Herb]

CAS-Based Concurrency
[Andrei]

Ask us anything...in advance
[Panel]

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Points and Counterpoints
[Panel]

Lambdas, Lambdas,
Everywhere

[Herb]

A Fresh Look at Containers
and Iterators

[Andrei]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 2
[Scott]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 1
[Scott]

CPU Caches and
Why You Care

[Scott]

Elements of Design, Part 2
[Herb]

Reception
[Ballroom]

Informal Discussions
[Falls Terrace & Ballroom]

Informal Discussions
[Falls Terrace & Ballroom]

Super Size Me: Lessons
Learned Working at a Web

Company
[Andrei]

Free Time
(No Official C&B-Related Activities)

7:30 - 9:30

8:00 - 9:00

9:00 - 10:30

10:45 - 12:00

12:00 - 2:30

2:30 - 3:45

4:00 - 5:00

5:00 - 7:30

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

C++ and Beyond
Snoqualmie, Washington, USA

December 13-16, 2010

Schedule

8:45 - 9:00 Welcome Announcements Announcements

Break Break Break

Break Break Break

Scalable Use of the STL
[Andrei]

Group Lunch
and

Mid-Day Activity

Super Size Me: Lessons
Learned Working at a Web

Company
[Andrei]

Monday Tuesday Wednesday Thursday

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 1
[Scott]

Elements of Design, Part 1
[Herb]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 2
[Scott]

CPU Caches and
Why You Care

[Scott]

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Elements of Design, Part 2
[Herb]

Reception
[Falls Terrace]

Informal Discussions
[Falls Terrace]

Informal Discussions
[Falls Terrace]

Free Time
(No Official C&B-Related Activities)

Lambdas, Lambdas,
Everywhere

[Herb]

Q&A
[Andrei, Scott, Herb]

Q&A
[Herb, Andrei, Scott]

CAS-Based Concurrency
[Andrei]

Informal C++0x Feature
Overview

[Scott, Herb, Andrei]

8:00 - 8:45

2:30 - 4:00

7:30 - 9:30

9:00 - 10:30

10:45 - 12:00

12:00 - 2:30

5:00 - 7:30

4:15 - 5:00

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Last�Revised:�12/21/10

Scott�Meyers,�Ph.D.
Software�Development�Consultant

smeyers@aristeia.com Voice:�503/638�6028
http://www.aristeia.com/ Fax:�503/974�1887

Move�Semantics,�Rvalue�References,�
and�Perfect�Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�2

C++0x�Warning

Some�examples�show�C++0x�features�unrelated�to�move�semantics.

I’m�sorry�about�that.

But�not�that�sorry�:�)

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�3

Move�Support
C++�sometimes�performs�unnecessary�copying:

typedef std::vector<T> TVec;
TVec createTVec(); // factory function
TVec vt;
…
vt = createTVec(); // copy return value object to vt,

// then destroy return value object

createTVec
TVec

T T T … T T T

vt

T T T … T T T

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�4

Move�Support
Moving values�would�be�cheaper:

TVec vt;
…
vt = createTVec(); // move data in return value object

// to vt, then destroy return value
// object

createTVec
TVec

T T T … T T T

vt

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�5

Move�Support
Appending�to�a�full�vector causes�much�copying�before�the�append:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks

// unused capacity

vt T T T … T T T

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T T T … T T T

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T

T
S

ta
te

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�6

Move�Support
Again,�moving�would�be�more�efficient:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks

// unused capacity

Other�vector and�deque operations�could�similarly�benefit.

� insert,�emplace,�resize,�erase,�etc.

vt T T T … T T T

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T T T … T T T T

T
S

ta
te

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�7

Move�Support
Still�another�example:

template<typename T> // straightforward std::swap impl.
void swap(T& a, T& b)
{

T tmp(a); // copy a to tmp (2 copies of a)
a = b; // copy b to a (2 copies of b)
b = tmp; // copy tmp to b (2 copies of tmp)

} // destroy tmp

a

b

tmp copy of a’s state

a’s state

b’s state

copy of b’s state

copy of a’s state

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�8

Move�Support
template<typename T> // straightforward std::swap impl.
void swap(T& a, T& b)
{

T tmp(std::move(a)); // move a’s data to tmp
a = std::move(b); // move b’s data to a
b = std::move(tmp); // move tmp’s data to b

} // destroy (eviscerated) tmp

a

b

tmpa’s state

b’s state

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 1

Herb Sutter

industrial design applies to
industrial software

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 2

1. Process

2. Principles

3. Elements

What do you think of this code?

CustomContainer<T> c;

for(auto i = src.begin(); i != src.end(); ++i) {
 c.insert(*i);
}

CustomMap<string,string> phone;

phone*“John”+ = “212-555-1212”; // inserts into map

phone.Insert(“John”, “212-555-1212”); // inserts into map

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 3

Design for the user

Design For the User

 Guiding star: What the consuming code looks like.

 Start of design: First, write some of the calling code.

 During design: Rinse and repeat.

 Key goals:

 Applicability: Solving an actual user’s problem.

 Usability: Being understandable, discoverable.

 Why it’s difficult:

 You’re not him/her (nearly always).

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 4

Pitfall: Avoid “Expert-Friendly” Design

 Easy to say.

 (Blush.)

 C++0x example: Metaprogramming extensions vs. “auto.”

 Which would you be most interested in spending time
designing?

 Which would most programmers be most interested in using
(applicability) and able to understand (usability)?

 Why it’s difficult:

 You’re an expert.

Aim to enable
“what,” not “how”

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

© 2010- Andrei Alexandrescu. Do not redistribute. 1 / 33

CAS-Based Concurrency
Prepared for C++ and Beyond 2010

Andrei Alexandrescu, PhD

andrei@erdani.com

This Talk

© 2010- Andrei Alexandrescu. Do not redistribute. 2 / 33

• Lock-free programming: Brief history

and introduction

• CAS-based code

• A Singly-Linked Lock-Free List

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Motto

© 2010- Andrei Alexandrescu. Do not redistribute. 3 / 33

“Multithreading is just one darn thing

after, before, or simultaneously with

another”.

Lock-free Programming:

Brief History and

Introduction

© 2010- Andrei Alexandrescu. Do not redistribute. 4 / 33

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Defining Terms

© 2010- Andrei Alexandrescu. Do not redistribute. 5 / 33

• Wait-free procedure: completes in a bounded

number of steps regardless of the relative

speeds of other threads

• Lock-free procedure: at any time, at least one

thread is guaranteed to make progress

◦ Probabilistically, all threads will finish

timely

• Mutex-based procedures

◦ Not wait-free

◦ Not lock-free

A Different Angle

© 2010- Andrei Alexandrescu. Do not redistribute. 6 / 33

• Lock-based: ask for synchronization device

prior to operation

• Pessimistically assumes contention

• Wait/Lock-free: Perform operation, attempt to

commit

• Optimistically assumes no contention

• “Better ask for forgiveness than permission”

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Brief History

© 2010- Andrei Alexandrescu. Do not redistribute. 7 / 33

• Lock-based threading theory established in

the 1960s

◦ Still the dominant model today

• By 1972—efforts to avoid mutex-based

pessimistic concurrency control

◦ Atomic assignment

◦ Use of atomic instructions: increment,

test-and-set

• By 1990—search for universal atomic

primitive that would enable all others

• 1991: “Wait-free synchronization” by Herlihy

settles the matter

Impossibility/Universality

© 2010- Andrei Alexandrescu. Do not redistribute. 8 / 33

• Some primitives cannot synchronize any

shared data structure for >2 threads

◦ test-and-set

◦ fetch-and-add

◦ atomic queues!

• Some other primitives are enough to

implement any shared data structure

◦ e.g., CAS

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

	October Schedule
	December Schedule
	Meyers: Move Semantics
	Sutter: Elements of Design 1
	Alexandrescu: CAS-Based Concurrency

