
Image: NASA
artima

Sample
Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

C++ and Beyond 2010 Sample

Thank you for downloading this sample from the official presentation materials for
the C++ and Beyond 2010 event, presented by Scott Meyers, Herb Sutter, and An-
drei Alexandrescu. If you’d like to purchase the complete copy of these materials,
please visit:

http://www.artima.com/shop/cpp_and_beyond_2010

Artima Press is an imprint of Artima, Inc.
P.O. Box 305, Walnut Creek, California 94597

Copyright © 2011 Scott Meyers, Herb Sutter, Andrei Alexandrescu.
All rights reserved.

All information and materials in this document are provided “as is” and without war-
ranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or regis-
tered trademarks of their owners.

C++ and Beyond
Snoqualmie, Washington, USA

October 24-27, 2010

Schedule

Welcome [Andrei]

Break Break Break

Break Break
Break

Sunday Monday Tuesday Wednesday

Group Breakfast
[Attic]

Ask us anything...live!
[Panel]

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Elements of Design, Part 1
[Herb]

CAS-Based Concurrency
[Andrei]

Ask us anything...in advance
[Panel]

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Points and Counterpoints
[Panel]

Lambdas, Lambdas,
Everywhere

[Herb]

A Fresh Look at Containers
and Iterators

[Andrei]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 2
[Scott]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 1
[Scott]

CPU Caches and
Why You Care

[Scott]

Elements of Design, Part 2
[Herb]

Reception
[Ballroom]

Informal Discussions
[Falls Terrace & Ballroom]

Informal Discussions
[Falls Terrace & Ballroom]

Super Size Me: Lessons
Learned Working at a Web

Company
[Andrei]

Free Time
(No Official C&B-Related Activities)

7:30 - 9:30

8:00 - 9:00

9:00 - 10:30

10:45 - 12:00

12:00 - 2:30

2:30 - 3:45

4:00 - 5:00

5:00 - 7:30

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

C++ and Beyond
Snoqualmie, Washington, USA

December 13-16, 2010

Schedule

8:45 - 9:00 Welcome Announcements Announcements

Break Break Break

Break Break Break

Scalable Use of the STL
[Andrei]

Group Lunch
and

Mid-Day Activity

Super Size Me: Lessons
Learned Working at a Web

Company
[Andrei]

Monday Tuesday Wednesday Thursday

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Group Breakfast
[Attic]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 1
[Scott]

Elements of Design, Part 1
[Herb]

Move Semantics, Rvalue
References, and Perfect

Forwarding, Part 2
[Scott]

CPU Caches and
Why You Care

[Scott]

Group Lunch
and

Mid-Day Activity

Group Lunch
and

Mid-Day Activity

Elements of Design, Part 2
[Herb]

Reception
[Falls Terrace]

Informal Discussions
[Falls Terrace]

Informal Discussions
[Falls Terrace]

Free Time
(No Official C&B-Related Activities)

Lambdas, Lambdas,
Everywhere

[Herb]

Q&A
[Andrei, Scott, Herb]

Q&A
[Herb, Andrei, Scott]

CAS-Based Concurrency
[Andrei]

Informal C++0x Feature
Overview

[Scott, Herb, Andrei]

8:00 - 8:45

2:30 - 4:00

7:30 - 9:30

9:00 - 10:30

10:45 - 12:00

12:00 - 2:30

5:00 - 7:30

4:15 - 5:00

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Last�Revised:�12/21/10

Scott�Meyers,�Ph.D.
Software�Development�Consultant

smeyers@aristeia.com Voice:�503/638�6028
http://www.aristeia.com/ Fax:�503/974�1887

Move�Semantics,�Rvalue�References,�
and�Perfect�Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�2

C++0x�Warning

Some�examples�show�C++0x�features�unrelated�to�move�semantics.

I’m�sorry�about�that.

But�not�that�sorry�:�)

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�3

Move�Support
C++�sometimes�performs�unnecessary�copying:

typedef std::vector<T> TVec;
TVec createTVec(); // factory function
TVec vt;
…
vt = createTVec(); // copy return value object to vt,

// then destroy return value object

createTVec
TVec

T T T … T T T

vt

T T T … T T T

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�4

Move�Support
Moving values�would�be�cheaper:

TVec vt;
…
vt = createTVec(); // move data in return value object

// to vt, then destroy return value
// object

createTVec
TVec

T T T … T T T

vt

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�5

Move�Support
Appending�to�a�full�vector causes�much�copying�before�the�append:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks

// unused capacity

vt T T T … T T T

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T T T … T T T

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T

T
S

ta
te

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�6

Move�Support
Again,�moving�would�be�more�efficient:

std::vector<T> vt;
...
vt.push_back(T object); // assume vt lacks

// unused capacity

Other�vector and�deque operations�could�similarly�benefit.

� insert,�emplace,�resize,�erase,�etc.

vt T T T … T T T

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T
S

ta
te

T T T … T T T T

T
S

ta
te

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Move Semantics, Rvalue References, Perfect Forwarding

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�7

Move�Support
Still�another�example:

template<typename T> // straightforward std::swap impl.
void swap(T& a, T& b)
{

T tmp(a); // copy a to tmp (2 copies of a)
a = b; // copy b to a (2 copies of b)
b = tmp; // copy tmp to b (2 copies of tmp)

} // destroy tmp

a

b

tmp copy of a’s state

a’s state

b’s state

copy of b’s state

copy of a’s state

Scott�Meyers,�Software�Development�Consultant
http://www.aristeia.com/

©�2010�Scott�Meyers,�all�rights�reserved.
Slide�8

Move�Support
template<typename T> // straightforward std::swap impl.
void swap(T& a, T& b)
{

T tmp(std::move(a)); // move a’s data to tmp
a = std::move(b); // move b’s data to a
b = std::move(tmp); // move tmp’s data to b

} // destroy (eviscerated) tmp

a

b

tmpa’s state

b’s state

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 1

Herb Sutter

industrial design applies to
industrial software

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 2

1. Process

2. Principles

3. Elements

What do you think of this code?

CustomContainer<T> c;

for(auto i = src.begin(); i != src.end(); ++i) {
 c.insert(*i);
}

CustomMap<string,string> phone;

phone*“John”+ = “212-555-1212”; // inserts into map

phone.Insert(“John”, “212-555-1212”); // inserts into map

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 3

Design for the user

Design For the User

 Guiding star: What the consuming code looks like.

 Start of design: First, write some of the calling code.

 During design: Rinse and repeat.

 Key goals:

 Applicability: Solving an actual user’s problem.

 Usability: Being understandable, discoverable.

 Why it’s difficult:

 You’re not him/her (nearly always).

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

Elements of Design Herb Sutter
Software Development Consultant

www.gotw.ca/training

© 2010 by Herb Sutter
except material otherwise referenced.

Date updated: December 17, 2010
Page: 4

Pitfall: Avoid “Expert-Friendly” Design

 Easy to say.

 (Blush.)

 C++0x example: Metaprogramming extensions vs. “auto.”

 Which would you be most interested in spending time
designing?

 Which would most programmers be most interested in using
(applicability) and able to understand (usability)?

 Why it’s difficult:

 You’re an expert.

Aim to enable
“what,” not “how”

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond_2010

© 2010- Andrei Alexandrescu. Do not redistribute. 1 / 33

CAS-Based Concurrency
Prepared for C++ and Beyond 2010

Andrei Alexandrescu, PhD

andrei@erdani.com

This Talk

© 2010- Andrei Alexandrescu. Do not redistribute. 2 / 33

• Lock-free programming: Brief history

and introduction

• CAS-based code

• A Singly-Linked Lock-Free List

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Motto

© 2010- Andrei Alexandrescu. Do not redistribute. 3 / 33

“Multithreading is just one darn thing

after, before, or simultaneously with

another”.

Lock-free Programming:

Brief History and

Introduction

© 2010- Andrei Alexandrescu. Do not redistribute. 4 / 33

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Defining Terms

© 2010- Andrei Alexandrescu. Do not redistribute. 5 / 33

• Wait-free procedure: completes in a bounded

number of steps regardless of the relative

speeds of other threads

• Lock-free procedure: at any time, at least one

thread is guaranteed to make progress

◦ Probabilistically, all threads will finish

timely

• Mutex-based procedures

◦ Not wait-free

◦ Not lock-free

A Different Angle

© 2010- Andrei Alexandrescu. Do not redistribute. 6 / 33

• Lock-based: ask for synchronization device

prior to operation

• Pessimistically assumes contention

• Wait/Lock-free: Perform operation, attempt to

commit

• Optimistically assumes no contention

• “Better ask for forgiveness than permission”

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

Brief History

© 2010- Andrei Alexandrescu. Do not redistribute. 7 / 33

• Lock-based threading theory established in

the 1960s

◦ Still the dominant model today

• By 1972—efforts to avoid mutex-based

pessimistic concurrency control

◦ Atomic assignment

◦ Use of atomic instructions: increment,

test-and-set

• By 1990—search for universal atomic

primitive that would enable all others

• 1991: “Wait-free synchronization” by Herlihy

settles the matter

Impossibility/Universality

© 2010- Andrei Alexandrescu. Do not redistribute. 8 / 33

• Some primitives cannot synchronize any

shared data structure for >2 threads

◦ test-and-set

◦ fetch-and-add

◦ atomic queues!

• Some other primitives are enough to

implement any shared data structure

◦ e.g., CAS

Click here to purchase the complete PDF document.

http://www.artima.com/shop/cpp_and_beyond
http://www.artima.com/shop/cpp_and_beyond_2010

	October Schedule
	December Schedule
	Meyers: Move Semantics
	Sutter: Elements of Design 1
	Alexandrescu: CAS-Based Concurrency

