
artima

Scott Meyers

Presentation Materials

Embedded Environment

Effective C++
in an

Sample
Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment Sample

Thank you for downloading this sample from the presentation materials for Scott
Meyers’ Effective C++ in an Embedded Environment training course. If you’d like to
purchase the complete copy of these notes, please visit:

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Artima Press is an imprint of Artima, Inc.
2070 N Broadway #305, Walnut Creek, California 94597

Copyright © 2010-2015 Scott Meyers. All rights reserved.

Cover photo by Stephan Jockel. Used with permission.

All information and materials in this document are provided “as is” and without war-
ranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or regis-
tered trademarks of their owners.

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

These are the official notes for Scott Meyers’ training course, “Effective C++ in an
Embedded Environment”. The course description is at http://www.aristeia.com/c++-in-

embedded.html. Licensing information is at http://aristeia.com/Licensing/licensing.html.

For the most part, the course is based on C++98/03, although there are a few places where
C++11 or C++14 considerations are mentioned.

Please send bug reports and improvement suggestions to smeyers@aristeia.com.

In these notes, references to numbered documents preceded by N (e.g., N3092) are
references to C++ standardization document. All such documents are available via
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/.

[Comments in braces, such as this, are aimed at instructors presenting the course. All
other comments should be helpful for both instructors and people reading the notes on
their own.]

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503-638-6028
http://www.aristeia.com/ Fax: 503-974-1887

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Effective C++ in an Embedded Environment

© 2014 Scott Meyers, all rights reserved.
Last Revised: 2/23/15

Click here to purchase the complete PDF document!

http://aristeia.com/Licensing/licensing.html
http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Important!

In this talk, I assume you know all of C++.

You may not.

When you see or hear something you don’t recognize,
please ask!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2014 Scott Meyers, all rights reserved.

Slide 2

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 3

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 2 (Approximate):

 Modeling Memory-Mapped IO

 Implementing Callbacks from C APIs

 Interesting Template Applications:

 Type-safe void*-based containers

Compile-time dimensional unit analysis

 Specifying FSMs

 Considerations for Safety-Critical and Real-Time Systems

 Further Information

© 2014 Scott Meyers, all rights reserved.

Slide 4

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Always on the Agenda

 Your questions, comments, topics, problems, etc.

Always top priority.

The primary course goal is to cover what you want to know.

 It doesn’t matter whether it’s in the prepared materials.

© 2014 Scott Meyers, all rights reserved.

Slide 5

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 6

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Other than what’s on this page, this course includes virtually no treatment of C++14.

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“C++”

Timeline and terminology:

 1998: C++98: “Old” standard C++.

 2003: C++03: Bugfix revision for C++98.

 2005: TR1: Proposed extensions to standard C++ library.

Common for most parts to ship with current compilers.

Overview comes later in course.

 2011: C++11: “New” standard C++.

Common for many parts to ship with latest compiler releases.

 2014: C++14: Comparatively minor revision to C++11.

Notable for embedded developers: more flexible constexpr functions,
binary literals, “sized” operator delete/delete[] at global scope.

© 2014 Scott Meyers, all rights reserved.

Slide 7

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

[The goal of this slide is to get people to recognize that their view about what it means to
develop for embedded systems may not be the same as others’ views. The first time I
taught this class, I had one person writing code for a 4-bit microprocessor used in a digital
camera (i.e., a mass-market consumer device), and I also had a team writing real-time
radar analysis software to be used in military fighter planes. The latter would have a very
limited production run, and if the developers needed more CPU or memory, they simply
added a new board to the system. Both applications were “embedded,” but they had
almost nothing in common.]

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

“Embedded Systems”

Embedded systems using C++ are diverse:

 Real-time? Maybe.

 Safety-critical? Maybe.

 Challenging memory limitations? Maybe.

 Challenging CPU limitations? Maybe.

 No heap? Maybe.

 No OS? Maybe.

 Multiple threads or tasks? Maybe.

 “Old” or “weak” compilers, etc? Maybe.

 No hard drive? Often.

 Difficult to field-upgrade? Typically.

© 2014 Scott Meyers, all rights reserved.

Slide 8

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Developing for Embedded Systems

In general, little is “special” about developing for embedded systems:

 Software must respect the constraints of the problem and platform.

 C++ language features must be applied judiciously.

These are true for non-embedded applications, too.

 Good embedded software development is just good software
development.

© 2014 Scott Meyers, all rights reserved.

Slide 9

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Overview

Day 1 (Approximate):

 “C++” and “Embedded Systems”

 A Deeper Look at C++

 Implementing language features

Understanding inlining

Avoiding code bloat

 3 Approaches to Interface-Based Programming

 Dynamic Memory Management

 C++ and ROMability

© 2014 Scott Meyers, all rights reserved.

Slide 10

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing C++

Why Do You Care?

 You’re just curious: how do they do that?

 You’re trying to figure out what’s going on while debugging.

 You’re concerned: do they do that efficiently enough?

 That’s the focus of this presentation

 Baseline: C size/speed

Have faith:

 C++ was designed to be competitive in performance with C.

 Generally speaking, you don't pay for what you don't use.

© 2014 Scott Meyers, all rights reserved.

Slide 11

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Abandon All Hope, Ye Who Enter!

 Compilers are allowed to implement virtual functions in any way they
like:

 There is no mandatory “standard” implementation

 The description that follows is mostly true for most implementations:

 I’ve skimmed over a few details

None of these details affects the fact that virtual functions are
typically implemented very efficiently

© 2014 Scott Meyers, all rights reserved.

Slide 12

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Consider this class:

class B {
public:

B();

virtual ~B();
virtual void f1();
virtual int f2(char c) const;
virtual void f3(int x) = 0;

void f4() const;
...

};

Compilers typically number the virtual functions in the order in which
they’re declared. In this example,

 The destructor is number 0

 f1 is number 1, f2 is number 2, f3 is number 3

Nonvirtual functions get no number.

© 2014 Scott Meyers, all rights reserved.

Slide 13

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

According to the “Pure Virtual Function Called” article by Paul Chisholm (see the “Further
Information” slides at the end of the notes), the Digital Mars compiler does not always
issue a message when a pure virtual function is called, it just halts execution of the
program.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

A vtbl (“virtual table”) will be generated for the class. It will look
something like this:

Notes:

 The vtbl is an array of pointers to functions

 It points to virtual function implementations:

 The ith element points to the virtual function numbered i

 For pure virtual functions, what the entry is is undefined.
 It’s often a function that issues an error and quits.

 Nonvirtual functions (including constructors) are omitted:

Nonvirtual functions are implemented like functions in C

implementation of B::f1

implementation of B::f2

???

B’s
vtbl

implementation of B::~B

© 2014 Scott Meyers, all rights reserved.

Slide 14

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

For the first example, gcc 4.4-4.7 issue warnings. VC9-11 do not.

For the second example, none of the compilers issues a warning.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Aside: Calling Pure Virtual Functions

Most common way to call pure virtuals is in a constructor or destructor:

class B {
public:

B() { f3(10); } // call to pure virtual
virtual void f3(int x) = 0;
...

};

This is easy to detect; many compilers issue a warning.

The following case is trickier:

class B {
public:

B() { f1(); } // call from ctor to “impure” virtual; looks safe

virtual void f1() { f3(10); } // call to pure virtual from non-ctor; looks safe

virtual void f3(int x) = 0;

...
};

Compilers rarely diagnose this problem.

© 2014 Scott Meyers, all rights reserved.

Slide 15

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Now consider a derived class:

class D1: public B {
public:

D1(); // nonvirtual
virtual void f3(int x); // overrides base virtual
virtual void f5(const std::string& s); // new virtual
virtual ~D1(); // overrides base virtual
...

};

It yields a vtbl like this:

Note how corresponding function implementations have corresponding
indices in the vtbl.

implementation of B::f1

implementation of B::f2

implementation of D1::f3

D1’s
vtbl

implementation of D1::~D1

implementation of D1::f5

© 2014 Scott Meyers, all rights reserved.

Slide 16

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

A second derived class would be treated similarly:

class D2: public B {
public:

D2();
virtual void f3(int x);
...

};

 D2’s destructor is automatically generated by the compiler.

implementation of B::f1

implementation of B::f2

implementation of D2::f3

D2’s
vtbl

implementation of D2::~D2

© 2014 Scott Meyers, all rights reserved.

Slide 17

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Objects of classes with virtual functions contain a pointer to the class’s vtbl:

This pointer is called the vptr (“virtual table pointer”).

 Its location within an object varies from compiler to compiler

Object’s vptr

Data members
for

the object

© 2014 Scott Meyers, all rights reserved.

Slide 18

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Vptrs point to vtbls:

vptr

Data
Members

D1’s
vtbl

Implementations
of D1’s virtual

functions

D1 Object

vptr

Data
Members

D1 Object

vptr

Data
Members

D1 Object

Data
Members

D2 Object

vptr

Data
Members

D2 Object

Data
Members

D2 Object

D2’s
vtbl

Implementations
of D2’s virtual

functions
vptr

vptr

© 2014 Scott Meyers, all rights reserved.

Slide 19

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

B = “Base”, M = “Middle”, D = “Derived”.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Vptrs are set by code compilers insert into constructors and destructors.

 In a hierarchy, each class’s constructor sets the vptr to
point to that class’s vtbl

 Ditto for the destructors in a hierarchy.

Compilers are permitted to optimize away unnecessary vptr assignments.

 E.g., vptr setup for a D object could look like this:

D obj;

Set vptr to B’s vtbl; // may be optimized away
Set vptr to M’s vtbl; // may be optimized away
Set vptr to D’s vtbl;
...
Set vptr to M’s vtbl; // may be optimized away
Set vptr to B’s vtbl; // may be optimized away

M

Implementing Virtual Functions

B

D

© 2014 Scott Meyers, all rights reserved.

Slide 20

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Consider this C++ source code:

void makeACall(B *pB)
{

pB->f1();
}

The call to f1 yields code equivalent to this:

(*pB->vptr[1])(pB); // call the function pointed to by
// vtbl entry 1 in the vtbl pointed
// to by pB->vptr; pB is passed as
// the “this” pointer

One implication:

 When a virtual function changes, every caller must recompile!

 e.g., if the function’s order in the class changes
 i.e., its compiler-assigned number.

 e.g., if the function’s signature changes.

© 2014 Scott Meyers, all rights reserved.

Slide 21

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

The diagram shows that if the first data member declared in a class has a type that requires
double-word alignment (e.g., double or long double), a word of padding may need to be
inserted after the vptr is added to the class. If the second declared data member is a word
in size and requires only single-word alignment (e.g., int), reordering the data members in
the class can allow the compiler to eliminate the padding after the vptr.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Implementing Virtual Functions

Size penalties:

 Vptr makes each object larger

Alignment restrictions could force
padding
 Reordering data members often

eliminates problem

 Per-class vtbl increases each application’s data space

Speed penalties:

 Call through vtbl slower than direct call:

 But usually only by a few instructions

 Inlining usually impossible:

 This is often inherent in a virtual call

But compared to C alternatives:

 Faster and smaller than if/then/else or switch-based techniques

 Guaranteed to be right

vptr

double

int

vptr

double

int

vptr

double

int

vptr

double

int

© 2014 Scott Meyers, all rights reserved.

Slide 22

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

SI = “Single Inheritance.” MI = “Multiple Inheritance.”

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Object Addresses under Multiple Inheritance

Under SI, we can generally think of object layouts and addresses like this:

class B { ... };

class D: public B { ... };

 An exception (with some compilers) is
when D has virtual functions, but B
doesn’t.

Under MI, it looks more like this:

class B1 { ... };

class B2 { ... };

class D: public B1,
public B2 { ... };

 D objects have multiple addresses:

One for B1* and D* pointers.

Another for B2* pointers.

B1 Data

B1* D*

B2*

B Data

B* D*

B2 Data

D Data

D Data

© 2014 Scott Meyers, all rights reserved.

Slide 23

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Null pointers never get an offset. At runtime, a pointer nullness test must be performed
before applying an offset.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Object Addresses under Multiple Inheritance

There is a good reason for this:

void f(B1 *pb1); // expects pb1 to point
// to the top of a B1

void g(B2 *pb2); // expects pb2 to point
// to the top of a B2

Some calls thus require offset adjustments:

D *pd = new D; // no adjustment needed

f(pd); // no adjustment needed

g(pd); // requires D* ⇒ B2* adjustment

B2 *pb2 = pd; // requires D* ⇒ B2* adjustment

Proper adjustments require proper type information:

if (pb2 == pd) … // test succeeds (pd converted to B2*)

if ((void*)pb2 == (void*)pd) … // test fails

B1* D*

B2*

B1 Data

B2 Data

D Data

© 2014 Scott Meyers, all rights reserved.

Slide 24

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

I don’t remember the details, but both B1 and B2 need to declare mf for the information on
this slide to be true for VC++. For g++, I believe it suffices for only B2 to declare mf.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Virtual Functions under Multiple Inheritance

Consider the plight of your compilers:

class B1 {
public:

virtual void mf(); // may be overridden in
... // derived classes

};

class B2 {
public:

virtual void mf(); // may be overridden in
... // derived classes

};

void g(B2 *pb2) // as before
{

pb2->mf(); // requires offset adjustment
} // before calling mf?

An adjustment is needed only if D overrides mf and pb2 really points to a D.

What should a compiler do? When generating code for the call,

 It may not know that D exists.

 It can’t know whether pb2 points to a D.

B1* D*

B2*

B1 Data

B2 Data

D Data

© 2014 Scott Meyers, all rights reserved.

Slide 25

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The problem is typically solved by

 Creating special vtbls that handle offset adjustments.

 For derived class objects, adding new vptrs to these vtbls, one
additional vptr for each base class after the first one:

class B1 { … };

class B2 { … };

class D:
public B1,
public B2 { … };

These special vptrs and vtbls apply only to derived class objects.

 Virtual functions for B1 and B2 objects are implemented as described
before.

Virtual Functions under Multiple Inheritance

B1 Data

B2 vptr

B1/D vptr

D Data

B1/D*

B2 Data

B2*

Impls of virtuals
declared in B2

D as B2
vtbl

D
vtbl

Impls of virtuals
declared in B1 or
D (and maybe B2)

© 2014 Scott Meyers, all rights reserved.

Slide 26

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Offset adjustments may be implemented in different ways:

 Storing deltas in the vtbl:

(*pObject->vptr[index])(pObject+Δ);

 Typically, most deltas will be 0, especially under SI.

 Passing virtual calls through thunks:

 Thunks are generated only if an adjustment is necessary.

 This approach is more common.

Δ
Func
Ptr

Virtual
Function
Impls.

Virtual Functions under Multiple Inheritance

Virtual
Function
Impls.

this adjustment

© 2014 Scott Meyers, all rights reserved.

Slide 27

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

I’m guessing about the jump in the diagram. An alternative would be for one thunk to fall
through to the next, with the sum of the offset adjustments calculated to ensure that the
proper this value is in place when the function body is entered.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Thunk Implementation

Often a function with multiple entry points:

Virtual
Function

Implementation

Return

this adjustment

jump

this adjustment

From
vtbls

© 2014 Scott Meyers, all rights reserved.

Slide 28

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

As I recall, g++ enters the function into both vtbls, but VC++ enters it into only the vtbl for
B2. This means that the call in red shown above would use the B2 vtbl under VC++, and
that means that there’d be a D*ÕB2* offset adjustment made prior to calling through the
B2 vtbl.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

The details of vtbl layout and usage under MI vary from compiler to
compiler.

 When a virtual is inherited from only a non-leftmost base, it may or
may not be entered into both vtbls:

class B1 { ... }; // declares no mf

class B2 {
public:

virtual void mf();
...

};

class D: public B1, public B2 { ... };

D *pd = new D;

pd->mf(); // may use either B2’s or D’s vptr,
// depending on the compiler

D Data

B2 Data

Virtual Functions under Multiple Inheritance

B1 Data

B2 vptr

B1/D vptrB1/D*

B2*

Impls of virtuals
declared in B2

D as B2

vtbl

D

vtbl

Impls of virtuals
declared in B1 or
D (and maybe B2)

© 2014 Scott Meyers, all rights reserved.

Slide 29

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

Effective C++ in an Embedded Environment

The quote is from Lippman’s Inside the C++ Object Model, for which there is a full reference
in the “Further Information” slides at the end of the notes.

Scott Meyers, Software Development Consultant © 2014 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

Virtual Functions, MI, and Virtual Base Classes

The general case involves:

 Virtual base classes with nonstatic data members.

 Virtual base classes inheriting from other virtual base classes.

 A mixture of virtual and nonvirtual inheritance in the same hierarchy.

Lippman punts:

Virtual base class support wanders off into the Byzantine...
The material is simply too esoteric to warrant discussion...

I punt, too :-)

© 2014 Scott Meyers, all rights reserved.

Slide 30

Click here to purchase the complete PDF document!

http://www.artima.com/shop/effective_cpp_in_an_embedded_environment

