Class

org.scalatest.junit

JUnit3Suite

Related Doc: package junit

Permalink

class JUnit3Suite extends TestCase with Suite with AssertionsForJUnit

A Suite that is also a junit.framework.TestCase.

A JUnit3Suite may be run by either JUnit 3 (such as JUnit 3.8) or ScalaTest's runner. You write it the way you write a JUnit 3 TestCase. Tests are methods that start with test, take no parameters, and have a Unit return type. You manage fixtures with methods setUp and tearDown. Here's an example:

import org.scalatest.junit.JUnit3Suite
import scala.collection.mutable.ListBuffer

class BlastFromThePastSuite extends JUnit3Suite {

  var sb: StringBuilder = _
  var lb: ListBuffer[String] = _

  override def setUp() {
    sb = new StringBuilder("ScalaTest is ")
    lb = new ListBuffer[String]
  }

  def testEasy() { // Uses JUnit-style assertions
    sb.append("easy!")
    assertEquals("ScalaTest is easy!", sb.toString)
    assertTrue(lb.isEmpty)
    lb += "sweet"
  }

  def testFun() { // Uses ScalaTest assertions
    sb.append("fun!")
    assert(sb.toString === "ScalaTest is fun!")
    assert(lb.isEmpty)
  }
}

You can use either JUnit's assertions, inherited from TestCase, or ScalaTest's, inherited from AssertionsForJUnit. You can also mix in ShouldMatchersForJUnit or MustMatchersForJUnit if you want to use ScalaTests's matchers DSL. Here's an example:

import org.scalatest.junit.JUnit3Suite
import org.scalatest.junit.MustMatchersForJUnit
import scala.collection.mutable.ListBuffer

class BlastFromThePastSuite extends JUnit3Suite with MustMatchersForJUnit {

  var stringBuilder: StringBuilder = _
  var listBuffer: ListBuffer[String] = _

  override def setUp() {
    stringBuilder = new StringBuilder("ScalaTest is ")
    listBuffer = new ListBuffer[String]
  }

  def testEasy() {
    stringBuilder.append("easy!")
    stringBuilder.toString must be ("ScalaTest is easy!")
    listBuffer must be ('empty)
    listBuffer += "sweet"
  }

  def testFun() {
    stringBuilder.append("fun!")
    stringBuilder.toString must be ("ScalaTest is fun!")
    listBuffer must be ('empty)
  }
}

The reason you would ordinarily want to mix in MustMatchersForJUnit or ShouldMatchersForJUnit rather than MustMatchers or ShouldMatchers is that MustMatchersForJUnit and ShouldMatchersForJUnit throw junit.framework.AssertionFailedErrors, which JUnit 3 will report as failures, not errors.

When writing JUnit 3 tests in Scala, you should keep in mind that JUnit 3 will not run tests that have a return type other than Unit. Thus it is best to leave off the equals sign before the curly braces of the body of the test, like this:

def testGoodIdea() { // result type will be Unit
  // ...
}

Instead of this:

def testBadIdea() = { // result type will be inferred
  // ...
}

If the testBadIdea method ends in an expression that has a result type other than Unit, the Scala compiler will infer a result type to the testBadIdea method to be the same non-Unit type. As a "result," JUnit 3 will not discover or run the testBadIdea method at all.

Self Type
JUnit3Suite
Source
JUnit3Suite.scala
Linear Supertypes
AssertionsForJUnit, Suite, Serializable, Serializable, Assertions, TripleEquals, TripleEqualsSupport, TestCase, Test, Assert, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. JUnit3Suite
  2. AssertionsForJUnit
  3. Suite
  4. Serializable
  5. Serializable
  6. Assertions
  7. TripleEquals
  8. TripleEqualsSupport
  9. TestCase
  10. Test
  11. Assert
  12. AnyRef
  13. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Instance Constructors

  1. new JUnit3Suite()

    Permalink

Type Members

  1. class AssertionsHelper extends AnyRef

    Permalink

    Helper class used by code generated by the assert macro.

    Helper class used by code generated by the assert macro.

    Definition Classes
    Assertions
  2. class CheckingEqualizer[L] extends AnyRef

    Permalink
    Definition Classes
    TripleEqualsSupport
  3. class Equalizer[L] extends AnyRef

    Permalink
    Definition Classes
    TripleEqualsSupport
  4. trait NoArgTest extends () ⇒ Outcome with TestData

    Permalink

    A test function taking no arguments and returning an Outcome.

    A test function taking no arguments and returning an Outcome.

    For more detail and examples, see the relevant section in the documentation for trait fixture.FlatSpec.

    Attributes
    protected
    Definition Classes
    Suite

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. def !==[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]

    Permalink
    Definition Classes
    TripleEqualsSupport
  3. def !==(right: Null): TripleEqualsInvocation[Null]

    Permalink
    Definition Classes
    TripleEqualsSupport
  4. def !==[T](right: T): TripleEqualsInvocation[T]

    Permalink
    Definition Classes
    TripleEqualsSupport
  5. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  6. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  7. def ===[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]

    Permalink
    Definition Classes
    TripleEqualsSupport
  8. def ===(right: Null): TripleEqualsInvocation[Null]

    Permalink
    Definition Classes
    TripleEqualsSupport
  9. def ===[T](right: T): TripleEqualsInvocation[T]

    Permalink
    Definition Classes
    TripleEqualsSupport
  10. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  11. macro def assert(condition: Boolean, clue: Any): Assertion

    Permalink

    Assert that a boolean condition, described in String message, is true.

    Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with a helpful error message appended with the String obtained by invoking toString on the specified clue as the exception's detail message.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assert(a == b, "a good clue")
    • assert(a != b, "a good clue")
    • assert(a === b, "a good clue")
    • assert(a !== b, "a good clue")
    • assert(a > b, "a good clue")
    • assert(a >= b, "a good clue")
    • assert(a < b, "a good clue")
    • assert(a <= b, "a good clue")
    • assert(a startsWith "prefix", "a good clue")
    • assert(a endsWith "postfix", "a good clue")
    • assert(a contains "something", "a good clue")
    • assert(a eq b, "a good clue")
    • assert(a ne b, "a good clue")
    • assert(a > 0 && b > 5, "a good clue")
    • assert(a > 0 || b > 5, "a good clue")
    • assert(a.isEmpty, "a good clue")
    • assert(!a.isEmpty, "a good clue")
    • assert(a.isInstanceOf[String], "a good clue")
    • assert(a.length == 8, "a good clue")
    • assert(a.size == 8, "a good clue")
    • assert(a.exists(_ == 8), "a good clue")

    At this time, any other form of expression will just get a TestFailedException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null.

    TestFailedException if the condition is false.

  12. macro def assert(condition: Boolean): Assertion

    Permalink

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assert(a == b)
    • assert(a != b)
    • assert(a === b)
    • assert(a !== b)
    • assert(a > b)
    • assert(a >= b)
    • assert(a < b)
    • assert(a <= b)
    • assert(a startsWith "prefix")
    • assert(a endsWith "postfix")
    • assert(a contains "something")
    • assert(a eq b)
    • assert(a ne b)
    • assert(a > 0 && b > 5)
    • assert(a > 0 || b > 5)
    • assert(a.isEmpty)
    • assert(!a.isEmpty)
    • assert(a.isInstanceOf[String])
    • assert(a.length == 8)
    • assert(a.size == 8)
    • assert(a.exists(_ == 8))

    At this time, any other form of expression will get a TestFailedException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the condition is false.

  13. macro def assertCompiles(code: String): Assertion

    Permalink

    Asserts that a given string snippet of code passes both the Scala parser and type checker.

    Asserts that a given string snippet of code passes both the Scala parser and type checker.

    You can use this to make sure a snippet of code compiles:

    assertCompiles("val a: Int = 1")
    

    Although assertCompiles is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string compiles, errors (i.e., snippets of code that do not compile) are reported as test failures at runtime.

    code

    the snippet of code that should compile

    Definition Classes
    Assertions
  14. macro def assertDoesNotCompile(code: String): Assertion

    Permalink

    Asserts that a given string snippet of code does not pass either the Scala parser or type checker.

    Asserts that a given string snippet of code does not pass either the Scala parser or type checker.

    Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

    assertDoesNotCompile("val a: String = \"a string")
    

    Although assertDoesNotCompile is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string doesn't compile, errors (i.e., snippets of code that do compile) are reported as test failures at runtime.

    Note that the difference between assertTypeError and assertDoesNotCompile is that assertDoesNotCompile will succeed if the given code does not compile for any reason, whereas assertTypeError will only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example, assertDoesNotCompile will return normally but assertTypeError will throw a TestFailedException.

    code

    the snippet of code that should not type check

    Definition Classes
    Assertions
  15. def assertResult(expected: Any)(actual: Any): Assertion

    Permalink

    Assert that the value passed as expected equals the value passed as actual.

    Assert that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), assertResult returns normally. Else, assertResult throws a TestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed actual value does not equal the passed expected value.

  16. def assertResult(expected: Any, clue: Any)(actual: Any): Assertion

    Permalink

    Assert that the value passed as expected equals the value passed as actual.

    Assert that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), assertResult returns normally. Else, if actual is not equal to expected, assertResult throws a TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed clue.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed actual value does not equal the passed expected value.

  17. def assertThrows[T <: AnyRef](f: ⇒ Any)(implicit classTag: ClassTag[T]): Assertion

    Permalink
    Definition Classes
    Assertions
  18. macro def assertTypeError(code: String): Assertion

    Permalink

    Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.

    Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.

    Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

    assertTypeError("val a: String = 1")
    

    Although assertTypeError is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string type checks, errors (i.e., snippets of code that do type check) are reported as test failures at runtime.

    Note that the difference between assertTypeError and assertDoesNotCompile is that assertDoesNotCompile will succeed if the given code does not compile for any reason, whereas assertTypeError will only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example, assertDoesNotCompile will return normally but assertTypeError will throw a TestFailedException.

    code

    the snippet of code that should not type check

    Definition Classes
    Assertions
  19. val assertionsHelper: AssertionsHelper

    Permalink

    Helper instance used by code generated by macro assertion.

    Helper instance used by code generated by macro assertion.

    Definition Classes
    Assertions
  20. macro def assume(condition: Boolean, clue: Any): Assertion

    Permalink

    Assume that a boolean condition, described in String message, is true.

    Assume that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException with a helpful error message appended with String obtained by invoking toString on the specified clue as the exception's detail message.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assume(a == b, "a good clue")
    • assume(a != b, "a good clue")
    • assume(a === b, "a good clue")
    • assume(a !== b, "a good clue")
    • assume(a > b, "a good clue")
    • assume(a >= b, "a good clue")
    • assume(a < b, "a good clue")
    • assume(a <= b, "a good clue")
    • assume(a startsWith "prefix", "a good clue")
    • assume(a endsWith "postfix", "a good clue")
    • assume(a contains "something", "a good clue")
    • assume(a eq b, "a good clue")
    • assume(a ne b, "a good clue")
    • assume(a > 0 && b > 5, "a good clue")
    • assume(a > 0 || b > 5, "a good clue")
    • assume(a.isEmpty, "a good clue")
    • assume(!a.isEmpty, "a good clue")
    • assume(a.isInstanceOf[String], "a good clue")
    • assume(a.length == 8, "a good clue")
    • assume(a.size == 8, "a good clue")
    • assume(a.exists(_ == 8), "a good clue")

    At this time, any other form of expression will just get a TestCanceledException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assume

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null.

    TestCanceledException if the condition is false.

  21. macro def assume(condition: Boolean): Assertion

    Permalink

    Assume that a boolean condition is true.

    Assume that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assume(a == b)
    • assume(a != b)
    • assume(a === b)
    • assume(a !== b)
    • assume(a > b)
    • assume(a >= b)
    • assume(a < b)
    • assume(a <= b)
    • assume(a startsWith "prefix")
    • assume(a endsWith "postfix")
    • assume(a contains "something")
    • assume(a eq b)
    • assume(a ne b)
    • assume(a > 0 && b > 5)
    • assume(a > 0 || b > 5)
    • assume(a.isEmpty)
    • assume(!a.isEmpty)
    • assume(a.isInstanceOf[String])
    • assume(a.length == 8)
    • assume(a.size == 8)
    • assume(a.exists(_ == 8))

    At this time, any other form of expression will just get a TestCanceledException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assume

    Definition Classes
    Assertions
    Exceptions thrown

    TestCanceledException if the condition is false.

  22. def cancel(cause: Throwable): Nothing

    Permalink

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestCanceledException will return cause.toString.

    cause

    a Throwable that indicates the cause of the cancellation.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if cause is null

  23. def cancel(message: String, cause: Throwable): Nothing

    Permalink

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message or cause is null

  24. def cancel(message: String): Nothing

    Permalink

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    message

    A message describing the cancellation.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null

  25. def cancel(): Nothing

    Permalink

    Throws TestCanceledException to indicate a test was canceled.

    Throws TestCanceledException to indicate a test was canceled.

    Definition Classes
    Assertions
  26. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. def conversionCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], cnv: (B) ⇒ A): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  28. def convertEquivalenceToAToBConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: <:<[A, B]): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  29. def convertEquivalenceToAToBConversionConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: (A) ⇒ B): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  30. def convertEquivalenceToBToAConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: <:<[B, A]): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  31. def convertEquivalenceToBToAConversionConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: (B) ⇒ A): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  32. def convertToCheckingEqualizer[T](left: T): CheckingEqualizer[T]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  33. implicit def convertToEqualizer[T](left: T): Equalizer[T]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  34. def countTestCases(): Int

    Permalink
    Definition Classes
    TestCase → Test
  35. def createResult(): TestResult

    Permalink
    Attributes
    protected[junit.framework]
    Definition Classes
    TestCase
  36. def defaultEquality[A]: Equality[A]

    Permalink
    Definition Classes
    TripleEqualsSupport
  37. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  38. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  39. final def execute: Unit

    Permalink

    Executes this Suite, printing results to the standard output.

    Executes this Suite, printing results to the standard output.

    This method, which simply invokes the other overloaded form of execute with default parameter values, is intended for use only as a mini-DSL for the Scala interpreter. It allows you to execute a Suite in the interpreter with a minimum of finger typing:

    scala> new SetSpec execute
    An empty Set
    - should have size 0
    - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
    

    If you do ever want to invoke execute outside the Scala interpreter, it is best style to invoke it with empty parens to indicate it has a side effect, like this:

    // Use empty parens form in regular code (outside the Scala interpreter)
    (new ExampleSuite).execute()
    

    Definition Classes
    Suite
  40. final def execute(testName: String = null, configMap: ConfigMap = ConfigMap.empty, color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit

    Permalink

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> new ExampleSuite execute
    

    (The above syntax actually invokes the overloaded parameterless form of execute, which calls this form with its default parameter values.) To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> new ExampleSuite execute ("my favorite test")
    

    Or:

    scala> new ExampleSuite execute (testName = "my favorite test")
    

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> new ExampleSuite execute (configMap = Map("inputFileName" -> "in.txt")
    

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> new ExampleSuite execute (color = false)
    

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run to not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> new ExampleSuite execute (durations = true)
    

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for shortstacks:

    scala> new ExampleSuite execute (shortstacks = true)
    

    For full stack traces, set fullstacks to true:

    scala> new ExampleSuite execute (fullstacks = true)
    

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompleted or RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> new ExampleSuite execute (stats = true)
    

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloaded execute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather than suite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTest Shell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    Definition Classes
    Suite
    Exceptions thrown

    IllegalArgumentException if testName is defined, but no test with the specified test name exists in this Suite

    NullArgumentException if the passed configMap parameter is null.

  41. def expectedTestCount(filter: Filter): Int

    Permalink

    Returns the number of tests expected to be run by JUnit when run is invoked on this Suite.

    Returns the number of tests expected to be run by JUnit when run is invoked on this Suite.

    If tagsToInclude in the passed Filter is defined, this class's implementation of this method returns 0. Else this class's implementation of this method returns the size of the set returned by testNames on the current instance.

    filter

    a Filter with which to filter tests to count based on their tags

    Definition Classes
    JUnit3SuiteSuite
  42. def fail(cause: Throwable): Nothing

    Permalink

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString.

    cause

    a Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if cause is null

  43. def fail(message: String, cause: Throwable): Nothing

    Permalink

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message or cause is null

  44. def fail(message: String): Nothing

    Permalink

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null

  45. def fail(): Nothing

    Permalink

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    Definition Classes
    Assertions
  46. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  47. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  48. def getName(): String

    Permalink
    Definition Classes
    TestCase
  49. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  50. def intercept[T <: AnyRef](f: ⇒ Any)(implicit classTag: ClassTag[T]): T

    Permalink

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    f

    the function value that should throw the expected exception

    classTag

    an implicit ClassTag representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed function does not complete abruptly with an exception that's an instance of the specified type passed expected value.

  51. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  52. def lowPriorityConversionCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], cnv: (A) ⇒ B): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  53. def lowPriorityTypeCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], ev: <:<[A, B]): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  54. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  55. def nestedSuites: IndexedSeq[Suite]

    Permalink

    An immutable IndexedSeq of this Suite object's nested Suites.

    An immutable IndexedSeq of this Suite object's nested Suites. If this Suite contains no nested Suites, this method returns an empty IndexedSeq. This trait's implementation of this method returns an empty List.

    Definition Classes
    Suite
  56. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  57. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  58. def pending: Assertion with PendingStatement

    Permalink

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)
    

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

    Definition Classes
    Assertions
  59. def pendingUntilFixed(f: ⇒ Unit): Assertion with PendingStatement

    Permalink

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

    Definition Classes
    Assertions
    Exceptions thrown

    TestPendingException if the passed block of code completes abruptly with an Exception or AssertionError

  60. def rerunner: Option[String]

    Permalink

    The fully qualified class name of the rerunner to rerun this suite.

    The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.

    Definition Classes
    Suite
  61. def run(testName: Option[String], args: Args): Status

    Permalink

    Overrides to use JUnit 3 to run the test(s).

    Overrides to use JUnit 3 to run the test(s).

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.

    Definition Classes
    JUnit3SuiteSuite
  62. def run(arg0: TestResult): Unit

    Permalink
    Definition Classes
    TestCase → Test
  63. def run(): TestResult

    Permalink
    Definition Classes
    TestCase
  64. def runBare(): Unit

    Permalink
    Definition Classes
    TestCase
    Annotations
    @throws( classOf[java.lang.Throwable] )
  65. final def runNestedSuites(args: Args): Status

    Permalink

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    The main purpose of this method implementation is to render a compiler error an attempt to mix in a trait that overrides runNestedSuites. Because this trait does not actually use runNestedSuites, the attempt to mix in behavior would very likely not work.

    args

    the Args for this run

    returns

    a Status object that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    JUnit3SuiteSuite
    Exceptions thrown

    UnsupportedOperationException always.

  66. final def runTest(testName: String, args: Args): Status

    Permalink

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    The main purpose of this method implementation is to render a compiler error an attempt to mix in a trait that overrides runTest. Because this trait does not actually use runTest, the attempt to mix in behavior would very likely not work.

    testName

    the name of one test to run.

    args

    the Args for this run

    returns

    a Status object that indicates when the test started by this method has completed, and whether or not it failed .

    Attributes
    protected
    Definition Classes
    JUnit3SuiteSuite
    Exceptions thrown

    UnsupportedOperationException always.

  67. def runTest(): Unit

    Permalink
    Attributes
    protected[junit.framework]
    Definition Classes
    TestCase
    Annotations
    @throws( classOf[java.lang.Throwable] )
  68. final def runTests(testName: Option[String], args: Args): Status

    Permalink

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    The main purpose of this method implementation is to render a compiler error an attempt to mix in a trait that overrides runTests. Because this trait does not actually use runTests, the attempt to mix in behavior would very likely not work.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    JUnit3SuiteSuite
    Exceptions thrown

    UnsupportedOperationException always.

  69. def setName(arg0: String): Unit

    Permalink
    Definition Classes
    TestCase
  70. def setUp(): Unit

    Permalink
    Attributes
    protected[junit.framework]
    Definition Classes
    TestCase
    Annotations
    @throws( classOf[java.lang.Exception] )
  71. final val styleName: String

    Permalink

    Suite style name.

    Suite style name.

    returns

    JUnit3Suite

    Definition Classes
    JUnit3SuiteSuite
  72. final val succeed: Succeeded.type

    Permalink
    Definition Classes
    Assertions
  73. def suiteId: String

    Permalink

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    This trait's implementation of this method returns the fully qualified name of this object's class. Each suite reported during a run will commonly be an instance of a different Suite class, and in such cases, this default implementation of this method will suffice. However, in special cases you may need to override this method to ensure it is unique for each reported suite. For example, if you write a Suite subclass that reads in a file whose name is passed to its constructor and dynamically creates a suite of tests based on the information in that file, you will likely need to override this method in your Suite subclass, perhaps by appending the pathname of the file to the fully qualified class name. That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for each reported suite.

    The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.

    returns

    this Suite object's ID.

    Definition Classes
    Suite
  74. def suiteName: String

    Permalink

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

    Definition Classes
    Suite
  75. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  76. def tags: Map[String, Nothing]

    Permalink

    Returns an empty Map, because tags are not supported by JUnit 3.

    Returns an empty Map, because tags are not supported by JUnit 3.

    Definition Classes
    JUnit3SuiteSuite
  77. def tearDown(): Unit

    Permalink
    Attributes
    protected[junit.framework]
    Definition Classes
    TestCase
    Annotations
    @throws( classOf[java.lang.Exception] )
  78. final def testDataFor(testName: String, theConfigMap: ConfigMap = ConfigMap.empty): TestData

    Permalink

    Provides a TestData instance for the passed test name, given the passed config map.

    Provides a TestData instance for the passed test name, given the passed config map.

    This method is used to obtain a TestData instance to pass to withFixture(NoArgTest) and withFixture(OneArgTest) and the beforeEach and afterEach methods of trait BeforeAndAfterEach.

    testName

    the name of the test for which to return a TestData instance

    theConfigMap

    the config map to include in the returned TestData

    returns

    a TestData instance for the specified test, which includes the specified config map

    Definition Classes
    JUnit3SuiteSuite
  79. def testNames: Set[String]

    Permalink

    Returns the set of test names that will be executed by JUnit when run is invoked on an instance of this class, or the instance is passed directly to JUnit for running.

    Returns the set of test names that will be executed by JUnit when run is invoked on an instance of this class, or the instance is passed directly to JUnit for running.

    The iterator obtained by invoking elements on this returned Set will produce the test names in their natural order, as determined by String's compareTo method. Nevertheless, this method is not consulted by JUnit when it runs the tests, and JUnit may run the tests in any order.

    Definition Classes
    JUnit3SuiteSuite
  80. def toString(): String

    Permalink
    Definition Classes
    TestCase → AnyRef → Any
  81. def trap[T](f: ⇒ T): Throwable

    Permalink

    Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException indicating no exception is thrown.

    Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException indicating no exception is thrown.

    This method is intended to be used in the Scala interpreter to eliminate large stack traces when trying out ScalaTest assertions and matcher expressions. It is not intended to be used in regular test code. If you want to ensure that a bit of code throws an expected exception, use intercept, not trap. Here's an example interpreter session without trap:

    scala> import org.scalatest._
    import org.scalatest._
    
    scala> import Matchers._
    import Matchers._
    
    scala> val x = 12
    a: Int = 12
    
    scala> x shouldEqual 13
    org.scalatest.exceptions.TestFailedException: 12 did not equal 13
       at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:449)
       at org.scalatest.Assertions$.newAssertionFailedException(Assertions.scala:1203)
       at org.scalatest.Assertions$AssertionsHelper.macroAssertTrue(Assertions.scala:417)
       at .<init>(<console>:15)
       at .<clinit>(<console>)
       at .<init>(<console>:7)
       at .<clinit>(<console>)
       at $print(<console>)
       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
       at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
       at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
       at java.lang.reflect.Method.invoke(Method.java:597)
       at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:731)
       at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:980)
       at scala.tools.nsc.interpreter.IMain.loadAndRunReq$1(IMain.scala:570)
       at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:601)
       at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
       at scala.tools.nsc.interpreter.ILoop.reallyInterpret$1(ILoop.scala:745)
       at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:790)
       at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:702)
       at scala.tools.nsc.interpreter.ILoop.processLine$1(ILoop.scala:566)
       at scala.tools.nsc.interpreter.ILoop.innerLoop$1(ILoop.scala:573)
       at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:576)
       at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:867)
       at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822)
       at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822)
       at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
       at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:822)
       at scala.tools.nsc.MainGenericRunner.runTarget$1(MainGenericRunner.scala:83)
       at scala.tools.nsc.MainGenericRunner.process(MainGenericRunner.scala:96)
       at scala.tools.nsc.MainGenericRunner$.main(MainGenericRunner.scala:105)
       at scala.tools.nsc.MainGenericRunner.main(MainGenericRunner.scala)
    

    That's a pretty tall stack trace. Here's what it looks like when you use trap:

    scala> trap { x shouldEqual 13 }
    res1: Throwable = org.scalatest.exceptions.TestFailedException: 12 did not equal 13
    

    Much less clutter. Bear in mind, however, that if no exception is thrown by the passed block of code, the trap method will create a new NormalResult (a subclass of Throwable made for this purpose only) and return that. If the result was the Unit value, it will simply say that no exception was thrown:

    scala> trap { x shouldEqual 12 }
    res2: Throwable = No exception was thrown.
    

    If the passed block of code results in a value other than Unit, the NormalResult's toString will print the value:

    scala> trap { "Dude!" }
    res3: Throwable = No exception was thrown. Instead, result was: "Dude!"
    

    Although you can access the result value from the NormalResult, its type is Any and therefore not very convenient to use. It is not intended that trap be used in test code. The sole intended use case for trap is decluttering Scala interpreter sessions by eliminating stack traces when executing assertion and matcher expressions.

    Definition Classes
    Assertions
  82. def typeCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], ev: <:<[B, A]): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  83. implicit def unconstrainedEquality[A, B](implicit equalityOfA: Equality[A]): CanEqual[A, B]

    Permalink
    Definition Classes
    TripleEquals → TripleEqualsSupport
  84. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  85. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  86. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  87. def withClue[T](clue: Any)(fun: ⇒ T): T

    Permalink

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }
    

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
    

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if the passed clue is null

  88. final def withFixture(test: NoArgTest): Outcome

    Permalink

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    Throws UnsupportedOperationException, because this method is unused by this class, given this class's run method delegates to JUnit to run its tests.

    The main purpose of this method implementation is to render a compiler error an attempt to mix in a trait that overrides withFixture. Because this trait does not actually use withFixture, the attempt to mix in behavior would very likely not work.

    test

    the no-arg test function to run with a fixture

    Attributes
    protected
    Definition Classes
    JUnit3SuiteSuite

Inherited from AssertionsForJUnit

Inherited from Suite

Inherited from Serializable

Inherited from Serializable

Inherited from Assertions

Inherited from TripleEquals

Inherited from TripleEqualsSupport

Inherited from TestCase

Inherited from Test

Inherited from Assert

Inherited from AnyRef

Inherited from Any

Ungrouped