The Artima Developer Community
Sponsored Link

Ruby Buzz Forum
SHA-256

0 replies on 1 page.

Welcome Guest
  Sign In

Go back to the topic listing  Back to Topic List Click to reply to this topic  Reply to this Topic Click to search messages in this forum  Search Forum Click for a threaded view of the topic  Threaded View   
Previous Topic   Next Topic
Flat View: This topic has 0 replies on 1 page
Jan Lelis

Posts: 136
Nickname: rbjl
Registered: Aug, 2009

Jan Lelis is an IT student from Dresden/Germany
SHA-256 Posted: Mar 22, 2010 5:56 PM
Reply to this message Reply

This post originated from an RSS feed registered with Ruby Buzz by Jan Lelis.
Original Post: SHA-256
Feed Title: rbJ*_*L.net
Feed URL: http://feeds.feedburner.com/rbJL
Feed Description: Hi, I am a fan of Ruby and like to explore it and the world around ;). So I started this blog, where I am publishing code snippets, tutorials for beginners as well as general thoughts about Ruby, the web or programming in general.
Latest Ruby Buzz Posts
Latest Ruby Buzz Posts by Jan Lelis
Latest Posts From rbJ*_*L.net

Advertisement

This is a Ruby implentation of the SHA-256 hashing algorithm. Truth be told: It is almost a plain copy of the Wikipedia pseudocode ;)

Listing 1
/17/sha-256.rb ruby
# Helper method
class Integer
  def rotate(n=1)
    self >> n | self << (32 - n)
  end
end

# Input
input = gets(nil).chomp

# Note 1: All variables are unsigned 32 bits and wrap modulo 232 when calculating
# Note 2: All constants in this pseudo code are in big endian

# Initialize variables
# (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
z = 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19

# Initialize table of round constants
# (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
k =
   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

# Pre-processing:
# append the bit '1' to the message
# append k bits '0', where k is the minimum number >= 0 such that the resulting message
#    length (in bits) is congruent to 448 (mod 512)
# append length of message (before pre-processing), in bits, as 64-bit big-endian integer
length = input.length*8
input << 128
input << 0 while input.size%64 != 56
input += [length].pack('Q').reverse

# Process the message in successive 512-bit chunks:
input.unpack('C*').each_slice(64){|chunk|
  w = []
  chunk.each_slice(4){|a,b,c,d| w << (((a<<8|b)<<8|c)<<8|d) }
  
  # Extend the sixteen 32-bit words into sixty-four 32-bit words:
  (16..63).map{|i|
    s0 = w[i-15].rotate(7) ^ w[i-15].rotate(18) ^ (w[i-15] >> 3)
    s1 = w[i-2].rotate(17) ^ w[i-2].rotate(19) ^ (w[i-2] >> 10)
    w[i] = w[i-16] + s0 + w[i-7] + s1 & 0xffffffff
  }
  
  # Initialize hash value for this chunk:
  a,b,c,d,e,f,g,h = z
  
  # Main loop:
  (0..63).each{|i|
    s0  = a.rotate(2) ^ a.rotate(13) ^ a.rotate(22)
    maj = (a & b) ^ (a & c) ^ (b & c)
    t2  = s0 + maj & 0xffffffff
    s1  = e.rotate(6) ^ e.rotate(11) ^ e.rotate(25)
    ch = (e & f) ^ ((~e) & g)
    t1 = h + s1 + ch + k[i] + w[i] & 0xffffffff
    
    h = g
    g = f
    f = e
    e = d + t1 & 0xffffffff
    d = c
    c = b
    b = a 
    a = t1 + t2 & 0xffffffff
  }
  
  # Add this chunk's hash to result so far:
  z[0] = z[0] + a & 0xffffffff
  z[1] = z[1] + b & 0xffffffff
  z[2] = z[2] + c & 0xffffffff
  z[3] = z[3] + d & 0xffffffff
  z[4] = z[4] + e & 0xffffffff
  z[5] = z[5] + f & 0xffffffff
  z[6] = z[6] + g & 0xffffffff
  z[7] = z[7] + h & 0xffffffff
}

# Produce the final hash value (big-endian)
hash = '%.8x'*8 % z

# Output
puts hash
CC-BY (DE)

Read: SHA-256

Topic: Don't Wait Previous Topic   Next Topic Topic: Selenium Grid Needs a New Maintainer

Sponsored Links



Google
  Web Artima.com   

Copyright © 1996-2019 Artima, Inc. All Rights Reserved. - Privacy Policy - Terms of Use