
Akka Concurrency
PrePrint™ Edition

Excerpt

artima
ARTIMA PRESS

MOUNTAIN VIEW, CALIFORNIA

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Excerpt from Akka Concurrency

Chapter 4

Akka Does Concurrency

Akka is a domain-neutral concurrency toolkit designed for the purposes of
building scalable, fault-tolerant applications on the JVM. It provides many
tools to help you achieve your goals, and in this chapter we’ll start to un-
derstand how to work with those tools so you can start building your high-
quality, highly concurrent applications. At the end of this chapter, you should
be in a better position to begin thinking in the Akka paradigm.

4.1 The actor

When we get past what Akka is and start looking at what it contains, it’s the
actor that pops its head up first. The actor does most of the heavy lifting in
our applications due to its flexibility, its location independence, and its fault-
tolerant behaviour. But even beyond these features, there’s an interesting
consequence of the actor design—it helps make concurrency development
more intuitive.

Your day-to-day world is full of concurrency. You impose it on yourself
as well as the people around you, and they impose it on you. The real-world
equivalents of critical sections and locks as well as synchronized methods
and data are all naturally handled by yourself and the people in your world.
People manage this by literally doing only one thing at a time. We like to
pretend that we can multi-task, but it’s simply not true. Anything meaningful
that we do requires that we do just that one thing. We can pause that task
and resume it later, switch it out for something else to work on and then
return to it, but actually doing more than one thing at a time just isn’t in our
wheelhouse.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 3

So what if we want to do more than one thing at a time? The answer is
pretty obvious: we just use more than one person. There’s not much in the
world that we’ve benefited from that wasn’t created by a gaggle of talented
people.

This is why actors make our application development more intuitive and
our application designs easier to reason about: they’re modeled after our
day-to-day lives.

Concurrency through messaging

If you want a coworker to do something for you (such as write a bunch
of tests for your code because you’re simply too busy playing NetHack1 to
engage in such trivialities), what do you do? You send the poor sod an email,
of course.

You Coding Intern

Write tests, curse,
make voodoo doll.

I'm trying to write up that
report for your supervisor, but
I just don't seem to have the
time due to all these tests I
have to write… if you get my
drift.

The tests are
complete, sir.

Figure 4.1 · The most productive way to abuse a coding intern.

It’s just that simple. Get the right people in place, have a decent mech-
anism for shunting messages around (bonus points if they’re durable), and
you’re good to go. Hell, if you could spawn enough interns you may be able
to play NetHack all day, every day, and even get paid to do it.

1http://www.nethack.org/

Buy the Book · Discuss

http://www.nethack.org/
http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 4

Actors follow this model. You send an actor a message that tells it to
do something, which it does presumably quickly and well, and then it tells
you what it did. You can scale this model out to thousands or millions (or
billions?) of actors and many orders of magnitude more messages and your
applications are still reasonable, not to mention huge and fast.

Concurrency through delegation

Given what happened in Figure 4.1, it would seem pretty obvious that we can
delegate work from one actor to another, but you can take this simple idea
even farther to achieve your goals. Since interns are so wonderfully cheap,
there’s no reason we can’t have a ton of interns chained to desks in a dark
room somewhere churning out whatever it is they are supposed to churn out.

You

Intern

Intern

Write a test

Write another
test

Write yet
another test

Intern

Figure 4.2 · Three interns mean three times the work (and abuse).

But Figure 4.2 is a pretty ineffective use of such a cheap resource. It
might even be better to have a single goal in mind and set a bunch of interns
to the task. They can each do it the exact same way, or they can all use a
different method for achieving the goal. You don’t need to care how they
get it done, just that someone gets it done before the rest. The intern who
wins gets a decent report to his or her supervisor, and maybe even a job offer

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 5

(although, seriously, you’re pretty mean) while the other interns get a rather
unfavorable letter sent to their supervisors.

You

Intern

Intern

Intern

Email system

Write the tests. The first
guy who finishes gets
my recommendation.
The rest… you're dead
to me.

Done!

Figure 4.3 · Competition between interns is never a bad thing.

Figure 4.3 gets a particular job done quicker by burning resources with
wild abandon. If you’ve got the people and they’re not doing anything else,
then why not give them some work to do? Sure, you might throw the results
of their efforts right in the trash, but who cares? OK, maybe they’ll care, but
who cares about that?2

So what if your interns realize what you’re doing and one of them decides
to learn from your example? If he’s got the resources available to him, then
he’s probably going to win if he follows your tactics. There’s nothing to stop
him from doing something like what’s in Figure 4.4.

Interestingly enough, the guy who won in Figure 4.4 would probably be
the guy who you hired, but he’d also be the guy that you fired because his
friends would eventually get tired of working for free, and he’d be exposed
as the lazy, slack-jawed worker he really is. Too bad for you.

2Jeez, you’re really mean.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 6

You
Intern

Intern

Intern

Email system

Write the tests. The first
guy who finishes gets
my recommendation.
The rest… you're dead
to me.

Done!

Friend

Friend

Write a test

Write another
test

FriendWrite yet
another test

Done

Done

Done

Figure 4.4 · Sneaky (or smart) interns are guaranteed to win every time.

Delegation for safety

While we’re on the subject of delegation, we should probably talk about one
of the other advantages it provides: safety. When was the last time you heard
of a sitting U.S. president heading out on a mission with a Navy Seal team
to rescue one of his constituents from a group of terrorists? OK, maybe it’s
because the guy’s seriously out of shape, or couldn’t hit the broadside of a
barn with a bullet the size of a fist from ten paces out, but let’s assume he’s
awesome. He still wouldn’t go on that mission. Why not? He’s just too damn
important. There are times when actors are too important to go on dangerous
missions, and when that’s the case, we delegate the mission to someone else.

You’re happy and safe in Figure 4.5 because you can delegate the dan-
gerous work to others. You may be mean, but you’re certainly no fool! All of
that cool information that you hold—the nuclear launch codes, the itinerary
for that policy summit, your spouse’s birthday, and all of that other important
stuff—is safely locked away in your brain. Unfortunately, Joe didn’t make it,
but truth be told, his brain was full of quotes from episodes of Family Guy.
Cool as that is, it’s just not vital stuff.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 7

You

Super Important stuff in
your brain. We wouldn't
want anything to happen
to it (your brain, that is).

We need to rescue
someone from the
clutches of evil-doers!

Joe

Mary

Joe can do it!

Joe didn't make it :(

Mary can do it!
Success!

Figure 4.5 · Putting certain actors in harm’s way keeps other actors safe.

While we’re on the subject of death

We weren’t explicit with Figure 4.5, but let’s be perfectly frank about it—Joe
died. It’s unfortunate, but it happens. An actor’s life isn’t always an easy or
safe one but the point is that the actor does have a life and along with it, a
life cycle. We’re going to see much more about the actor life cycle later, and
find ways in which we can hook into its life cycle, as well as the life cycles
of others. What’s interesting at the moment is that there is a life cycle and
that it (sort of) matches what we’re used to in real life. The people you work
with, the interns you are continuously beating on (metaphorically speaking,
of course) had to be born at some point, and there will come a day, sooner or
later, when they’re going to give up their ghost.

But the death of an actor is nothing to get upset about. Actor death
can be a very good thing. In an Akka application, there’s always someone
looking out for actors; someone’s always got their back. It’s not really the
fact that they die that is so great, it’s the fact that someone is there to watch
it and do something about it. There is, at most, one guy around to clean
him up, resurrect him, ignore him and let someone else figure it out, or just
ignore him altogether. We can literally just pretend that nothing bad actually
happened.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 8

When death occurs, there’s only one guy who manages to do something
with the deceased, but there are many guys who can react to that death and
take action upon notification of it. Presumably that notification is something
along the lines of what we saw in Figure 4.5. The notification in that case was
the unfortunate message: Joe didn’t make it. You were able to understand
the implications of that message and send Mary to take care of it. If you had
sent her first, Joe would probably still be with us, but hey, you can’t always
make the solid decisions.

There’s nothing wrong with creating child actors for the sole purpose
of putting them in harm’s way. In fact, it’s a very good thing. So don’t be
afraid of giving birth to an actor only to have him meet his ultimate demise
micro-seconds later. He’s more than happy to give his life in the service of
his parent’s good.

You also shouldn’t be afraid to use death to your advantage. Very often,
an actor can self-terminate when its work is completed and that death can be
a signal to anyone watching that the time has come to move on to the next
operation.

Doing one thing at a time

Actors only do one thing at a time; that’s the model of concurrency. If you
want to have more than one thing happen simultaneously, then you need to
create more than one actor to do that work. This makes pretty good sense,
right? We’ve been saying all along that actor programming draws a lot on
your day-to-day life experiences. If you want work done faster, put more
people on the job.3

Figure 4.6 provides a taste of what the actor structure looks like with
respect to processing things.

1. Messages come into a mailbox through (unless you want otherwise) a
non-blocking enqueue operation.

• This allows the caller to go about his business and doesn’t tie up
a waiting thread.

2. The enqueue operation wakes up the dispatcher who sees that there’s
a new message for the actor to process.

3Those of you who are thinking of the Mythical Man Month have earned a cookie, but
forget about it. Actors are not bound by such trivialities.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 9

Message

Message

Message

Message

Someone Enqueue

Mailbox Queue

Actor

DispatcherDequeue

Non Blocking

Pr
oc

es
s

D
on

e

Non Blocking

Dequeue Next

Figure 4.6 · A simplified view of actor message processing.

• In the case of Figure 4.6, we can see that the actor is already pro-
cessing a message, so there’s really nothing for the dispatcher to
do in this case, but if it were not processing anything at the mo-
ment it would be scheduled for execution on a thread and given
the message to process.

3. The dispatcher sends the message to the actor and the actor processes
it on whatever thread it was put on to do the work.

• During the time when the actor is processing the message, it’s in
its own little world.

• It can’t see other messages being queued and it can’t be affected
by anything else that’s happening elsewhere.

• The actor is just head-down doing what it needs to do. If it takes
a long time, then it’s going to tie up that thread for a long time.
It’s just that simple.

4. Eventually, the actor will finish processing the message.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 10

• The mere fact that it’s complete will signal the dispatcher, which
can then pull the next message off the queue and give it to the
actor to start the cycle all over again.

Details of the Akka implementation are subject to change, so that may
not be 100% accurate, of course, but the basic notion is correct. The whole
point is that it’s the messages that matter and the processing of those mes-
sages happens one at a time. The act of queueing and dispatching them is
entirely non-blocking by default, which allows threads to be truly dedicated
to doing work. Akka does a good job of staying out of your way so that when
you have scalability problems or bottlenecks in performance, it’s your fault.
And that’s the great news: if it’s your fault, then you’re in complete control
of fixing it.

What’s more is that the processing of those messages happens in com-
plete isolation from other work. It’s simply not possible for anything to hap-
pen that can screw with what the actor is doing right now. You don’t need to
lock the actor’s private data. You don’t have to synchronize a set of internal
operations that must be atomic. All you have to do is write your code.

The message is the message

Have you ever heard the phrase, “The medium is the message?”4 I’m sure it
made great sense to Marshall McLuhan when he said it and I’m sure that it
resonates with a bunch of other people, but it always seemed pretty silly to
me. You know what really makes a good message? A message. Thankfully,
actor programming is really all about the message. It’s the message that trav-
els from place to place, and it’s the message that carries the really interesting
state. For our purposes, it’s also the message that carries the type. A strongly
typed message allows us to write code that makes sense to the compiler, and
if we can make the compiler happy then we’re probably going to be pretty
happy ourselves.

But let’s step back for a second. What does it mean to say that a message
carries the interesting state? Aren’t actors the important mechanism here?
Isn’t it actors that do things? Of course it is, but if you remember back to
Section 2.3 you might recall that objects that change can be a bit unwieldy. If
the entire state of a running algorithm is contained inside the messages used

4Wikipedia, s.v. "The medium is the message," accessed Feb 15, 2013, http://en.
wikipedia.org/wiki/The_medium_is_the_message

Buy the Book · Discuss

http://en.wikipedia.org/wiki/The_medium_is_the_message
http://en.wikipedia.org/wiki/The_medium_is_the_message
http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 11

to execute that algorithm, then we are free to give that work to any actor with
code that can process that state. What’s more is that the actor, which may
be processing the algorithm at any given moment, isn’t burdened by weird
internal data that it has to keep alive during complex message processing.

Aggregating RSS feeds

To illustrate, let’s say you want to collect data from several RSS feeds, ag-
gregate them into one interesting content feed, and then send them off to
somewhere else. Moreover, you want to make sure that you can scale the
problem to multiple threads when you become successful and have to do this
for a thousand users simultaneously. You don’t care about making a single
user’s requests go quickly, you care about increasing your capacity for the
number of users on a given machine and their given requests, so we’re going
to do an individual user’s set of requests sequentially.

Figure 4.7 shows us what an algorithm would look like that behaves this
way. Note that the messages that travel between different invocations of the
actor have two separate sets of data in them: the list of sites to pull data
from, and the results of pulling that data. Initially, the list of sites is “full”
(i.e., has N things in it) and the list of results is empty. As the algorithm
progresses, the list of sites to visit becomes smaller and the list of results
becomes proportionally larger. Eventually the actor gets a message where
there’s nothing to do; the list of sites to visit is empty. When it gets this
message, it triggers different behaviour that collects the results into a single
aggregated feed and then publishes that forward to someone else (which we
don’t illustrate).

The fact that we’ve broken the problem up into individual messages en-
sures that we give back the executing thread at semi-regular intervals. This
keeps the system responsive and lets it handle a greater capacity of users.
The actor that’s doing the processing could even manage a bunch of differ-
ent users for us if we want, because it’s clueless about what’s happening
between invocations; all of the state is held inside the messages themselves.

Message immutability

The messages that are used in the RSS aggregation algorithm from Figure 4.7
are immutable. This will keep coming up—it came up before in Section 2.3
and it will come up again. In order for Akka to be able to do the cool things

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 12

Feeds = [site1, site2, … siteN]
Results = []

Feeds = [site2, … siteN]
Results = [results1]

Feeds = [… siteN]
Results = [results1, results2]

Feeds = []
Results = [results1, results2, …
resultsN]

Msg 1

Msg 2

Msg 3

Msg N

Actor
Series of tubes

that carry
information

Aggregated RSS Feed

Figure 4.7 · Using actor messages to aggregate RSS feeds in a stateful way.

that it does, and to work quickly and deterministically, it needs you to make
sure that your messages are immutable. It’s not just a good idea, it’s the
Akka law. Break it and you break yourself. Don’t break yourself.

Strongly typed messages, loosely typed endpoints

Just because the message is so important don’t start thinking that the actor
isn’t; the two are simply different things with important individual responsi-
bilities. Messages are key to the model of the actor application, but it’s the
actors that facilitate messaging.

One of the things that really helps actors deliver on power is the fact
that they’re loosely typed; every actor looks like every other actor. They
may behave differently or may accept a different set of messages, but until
someone sends those messages, you’ll never know the difference.

Now, before we extol the virtues of the untyped actor, we’ve got to get
something out of the way: Akka has a typed actor as well. We’re going
to ignore it in this book because, while the typed actor has its purpose, it’s
the flexibility of the untyped actor that drives a lot of power into an actor
program. To further explore this idea, let’s look at how the actor and the
messages interact.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 13

An actor is behaviour

One of the ways to view an actor/message pair is to see them together as
loosely equivalent to a function. Figure 4.8 shows one side of how you can
picture this; the actor contains the behaviour that is driven forward by the
message. The message is the symbol we use to describe the particular be-
haviour that the actor will execute (such as “Buy from the Grocery Store”),
and in order to execute that behaviour, the actor will probably need some
data (although not necessarily). This data is held in the body of the message.

Buy from
the Grocery

Store

Milk EggsButterFlour

"Function" name

"Function" Parameters

Actor

"Function" body / behaviour

Figure 4.8 · The actor and message can be viewed as a function.

This decoupling of behaviour from the invocation definition is also not
unlike a polymorphic function call. An interface can declare the method
signature but you can use any number of implementations of that interface to
implement the method signature in whatever manner is reasonable for those
implementations. However, with an untyped actor you have more flexibility
due to the fact that the actor does not need to implement the strongly typed
interface. The actor must only be able to process a message and that message
is the strongly typed entity.

Now, as we said above, this is only part of the story. We can’t just throw
the word function around as though its meaning were so easy to tailor to
our needs. Functions, in most people’s definition, evaluate their input data to
output data. Actors almost by definition have side effects. To truly view them

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 14

as functions instead of void procedures, we need to complete the picture.
The next step is realizing that actors can send messages as well. Figure 4.9
shows the obviousness of that idea.

Buy from
the Grocery

Store
Actor Car full of

groceries

Still just the behaviour

Input Output

Figure 4.9 · The actor is now an input/output function. . . mostly.

We’re really stretching the analogy now. We can think of the actor as
returning the new message, if that helps you wrap your head around some of
the concepts of actors. However, we must recognize that it only really works
as an analogy when the entity that receives the returned message is the same
one that sent the request, as in Figure 4.10.

Buy from
the Grocery

Store

Actor

Car full of
groceries

Some entity

Figure 4.10 · When the response is received, the “function” is complete.

In truth, the actor isn’t necessarily returning the message; it’s really just
sending the message to some other entity, which is possibly another actor.
The entity to which he’s sending it may be the initial actor that made the

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 15

request or it might be something else entirely. The actor itself doesn’t really
need to know anything about who sent what or who he’s sending things to.
All of this plumbing can be set up on-the-fly by anyone who interacts with
the actor. For example, let’s have someone tell an actor to get some groceries,
but to deliver them to someone else, as depicted in Figure 4.11.

Buy from the
Grocery Store

Deliver to Betty

Actor

Car full of
groceries

Some entity

Betty

Figure 4.11 · Actors need not send responses to the initiator.

Because we’ve spent most of our programming lives writing functions,
it’s important to try and draw a parallel to them. To a certain extent, there
is a relationship there, but it breaks down fairly quickly, as you can see.
An actor is behaviour and we can wire up that behaviour however we see
fit. This wiring can be simple, as in the case of Figure 4.9, or it can be far
more complicated than anything we’ve seen thus far. Not only that, it can
be entirely determined at runtime. You can dynamically create new actors to
handle work that wasn’t able to be statically constructed in your editor. This
is part of the actor paradigm; we need to get your brain to move beyond the
analogy of the function and start thinking in terms of actors. That’s part of
what this chapter’s all about.

Add behaviour by adding actors

One of the excellent things you can do with actors is to add behaviour to
an algorithm by inserting actors into the message flow. For example, let’s
say you’ve got a system that distributes a bunch of events to actors and you
want to start recording those events to disk. Rather than mixing behaviour

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 16

into a single class or inheriting functionality, in the style of OO, we have a
different alternative. With untyped actors, you can get away with putting a
tee5 in between the source and destination actor, as depicted in Figure 4.12.

Source
Actor

Destination
ActorEvent

"Tee" Actor

Disk

Event

Event

Figure 4.12 · Constructing message pipelines is easy with actors.

This sort of thing happens all the time in actor programming. When a
problem presents itself, you tend to solve it by way of creating more actors
with discrete behaviour than by adding functionality to existing actors. It’s
the fact that the actors are untyped and that the real information is contained
within the messages that makes this sort of flexibility possible.

Rather than modifying N classes or functions by putting in a callout (e.g.,
to a logging function) or refactoring to a new and very specific class hierar-
chy, it may be quite natural to slide a new actor into the message flow to let
it intercept certain messages, reroute them, duplicate them, transform them,
or whatever else is required by your situation.

The separation of typed-ness between the strongly typed message and
the loosely typed actor brings power to your designs and your code.

Don’t be scared

You’re a type junky. I get it. I’m a type junky too. One of the major reasons
I write in Scala is because it gives me a strong type system, and that lets me
know that my programs are sane when the compiler spits them out. How can

5As in the good ol’ UNIX tee program.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 17

type junkies such as ourselves live in the untyped world of actors and still
manage to sleep at night?

Web servers are untyped as well, and when we write a web service we’re
sending messages to an untyped endpoint. This doesn’t make us cringe be-
cause there are so few of them. I only have a few URLs that I code against so
it’s easy to keep it straight in my head, and I can be quite sure that messages
aren’t going to the wrong spots. But when you have an actor system, you
don’t have a few endpoints, you have tens to thousands to millions. Millions
of untyped endpoints can give type junkies the shakes.

Don’t sweat it. I have no numbers or theory to convince you that no
sweat should be shed over this lack of type safety; all I can say is that I’ve
never sent the wrong message to an actor. This is probably due to the fact that
actor programs are so easy to reason about; when things are clear, confusion
doesn’t exist, and it’s confusion that makes us mess stuff up.

But, even if we do send the wrong message to an actor from time to time,
it’s going to be worth it; so worth it, you won’t even think about it. If you’re
a type junkie, let it go. You’ll still use the type system for a ton of stuff and
it will be the sweet safety net that it’s always been. But when you leave it
behind for this one type of object, the actor, that will free you up to do some
incredible things.

Reactive programming

Actor programming is reactive programming. Another way to say this is that
it’s event-driven programming. Event-driven programming has been with us
for a long time, but it’s arguably never been epitomized as much as with
actor programming. The reason for this is that actors naturally sit there just
waiting for something to happen (i.e., waiting for a message).6 It’s not the
act of sending a message that’s important; it’s the act of receiving one that
really matters.

There are two major reasons for this:

1. People like to think in terms of timing. They want to know how long
it takes for something to happen after a message is sent.

• This is a very natural expectation. But in actor programming,
you have to put this into context.

6OK, they don’t “wait” in the traditional sense; that would tie up threads needlessly, and
that would be downright dumb.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.1 Chapter 4 · Akka Does Concurrency 18

• What does it mean for the message to be sent in the first place?

• Is it in the actor’s mailbox? Is it on a queue ready to be sent to
the mailbox? Is it traversing a network, and is there a store-and-
forward system that it’s been handed off to? Is the queuing of a
message a synchronous or asynchronous function?

• Once it’s in the mailbox, what does that mean? Is it one of twenty
thousand other messages waiting to be processed, or would the
mailbox be empty otherwise? Is it in a priority mailbox, and is it
so low that it’s going to be trumped for the next little while?

Clearly, the act of sending something isn’t really all that deterministic.
So when you start trying to put bounds or meaning on it with respect
to timing, things get very murky very quickly.

2. People also like to attach significance to the sending of the message
much like they would a function call.

• If we say Math.exp(-5.0), then the act of invoking that func-
tion has meaning. The code that underlies the exp function is
executed on the current thread. Dead simple.

• But, due to all of the reasons discussed above, we can’t say the
same about queueing a message in an actor’s mailbox.

The act of sending a message is important, since without it nothing
would happen, but it’s the reception of that message that carries true
meaning in actor programming. When the actor pulls that message
out of its mailbox and begins processing it, then it has truly received
that message. It’s at this time when meaning is applied in the sense of
execution.

These reasons illustrate why reception is the important part of message
passing in an actor system, but it doesn’t make the reactive programming
argument completely solid.

Well, you won’t get a completely solid argument for it, since nothing is
black and white in our complex world of software development, at least noth-
ing at this level of complexity. What’s important right now is that you start
thinking along those lines, especially if you’re not used to it. It’s perfectly
reasonable to code your actors to react to events that occur in the system,

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.2 Chapter 4 · Akka Does Concurrency 19

which is something that isn’t necessarily common in standard OO code (for
example). It can be as simple as the difference between these two statements:

• Turn the car left.

• The steering wheel on the car has turned to the left.

In the first, someone issued a command or a directive that says to do
something. In the second, someone posted an event that indicates a change
to the state of the world. This change to the state of the world would result
in the car turning to the left (we hope), which may cause another change to
the state of the world, and so forth.

The difference between the two is subtle, but important. Actor program-
ming isn’t just about a set of tools, but about thinking differently about how
you design and write your software. While you aren’t going to spend all of
your time writing reactionary code, there is some great potential for improv-
ing your designs by thinking in a more reactionary style in many cases.

4.2 The future

In the early days of Akka, the actor was the true headliner of the production,
and the future was mostly there to support the actor. As time progressed, the
Akka team built out the future concept more and more, and now in 2.x the
future has come into its own. It has grown up into a full-fledged paradigm
of concurrent programming that helps you solve tons of interesting problems
with speed and grace.

Unlike the actor, the future should be much more familiar to most, so
we’ll be blasting past it a bit quicker than we did the actor. But fear not,
these are the early stages only; we’ll be covering much more of the future in
later chapters.

Contrasting with the actor

The actor is not a silver bullet. There are many times when the problem with
which you’re faced isn’t solved well with actors. One of the easiest examples
I find is the idea of multiplying a bunch of matrices together. It looks like
what we’ve got in Figure 4.13.

We would like to parallelize this computation in order to saturate all of
our cores and/or all of our machines. To break the problem up, we can group

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.2 Chapter 4 · Akka Does Concurrency 20

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3
X . . .

7

6

2

5

9

5

2

1

3

10 million more

Figure 4.13 · 10,000,003 matrices, from which we want the product.

the multiplications, evaluate them in parallel, then multiply the results to-
gether to get one final matrix. Figure 4.14 shows us a specific case of two
groups of matrices being processed, but we can generalize the idea to as
many groups as we need.

Matrix Matrix Matrix Matrix

Group A Group B

Result A Result BX

x . . . xx . . . x

Final Matrix

Figure 4.14 · Grouping and parallelizing matrix multiplication.

There’s a subtlety to Figure 4.14 that might not be obvious to you if
you’ve never done this before. When multiplying matrices together, order
matters. It’s not the same as multiplying N numbers together, which you can

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.2 Chapter 4 · Akka Does Concurrency 21

do in any order you’d like (5×2×7 is the same as 7×5×2). The dimensions
of the matrices have to line up properly, and if you start shuffling the order
around, you’re going to find that the dimensions won’t line up anymore, or
if they do, you’re not going to get the right answer.

The challenge here isn’t the grouping and multiplying together of those
groups since their ordering is already set for us. What’s harder is taking
the results and keeping them in the right order. You must multiply Aresult ×
Bresult ×Cresult . . . and so on. If we model this problem with actors, then
keeping the results in the right sequence is non-trivial. It’s not brutal, but it’s
a pain. Figure 4.15 shows the core of why it’s a problem.

Result
Actor

Group A
Multiplier

Group B
Multiplier

Final Group
Multiplier

Returns 12th

Returns 40th

Returns 1st

Figure 4.15 · Actors don’t respond in any deterministic order.

You can have a single actor receive all of the matrices to be multiplied; it
can then group them and spawn new actors to multiply the groups. As each
group completes, it can send the result back to the original actor and it can
store that result while it waits for the rest. But it can’t just store it without
thinking about where it needs to go. So you end up having to pass a group to
an actor and give it some sort of sequence number as well. When the result
comes back, it must return the same sequence number so that the original
actor can slot it into the right spot. In addition, as each result comes in, the
actor must check to see if the latest result is actually the last result and, if so,
it can then multiply the results together and then pass the final result off to
someone else.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.2 Chapter 4 · Akka Does Concurrency 22

Whew! That’s a lot of work. It’s certainly doable, but it’s way more of a
bother than you’d like. Fortunately, the Akka future implementation makes
this problem much easier for us.

Futures are great at being context-free

One thing that futures are great at is accelerating “raw computation,” which
is why we’ve started by looking at matrix multiplication. The information
required to multiply N matrices together is simply the matrices themselves
and their ordering. We don’t need anything from a disk, or the network,
or a user, or anything of that sort. All we have to do is just plow through
N matrices, multiplying them together. If you want to parallelize a very
deterministic algorithm, futures are the way to go.

So, how would futures help us solve the matrix multiplication problem
better than actors? They solve the two biggest problems we have: maintain-
ing the sequence and knowing when everything’s done (see Figure 4.16).

Future
Group C

Future
Group B

Future
Group A

. . . Future
Last Group

Result CResult BResult A . . .Future Last Result

Sequence

Sequence

Figure 4.16 · Converting a list of futures into a future of results.

All we need to do is transform our list of matrices into a list of a groups
of matrices, and then transform that into a list of futures that compute the
multiplications.

val list = ... list of matrices ...

val grouped = list.grouped(5000) // 5000, just for fun

val futures = grouped.map { m => Future { ... multiply them ... } }

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.2 Chapter 4 · Akka Does Concurrency 23

We’ve obviously left out some details, which aren’t really important for
us right now. The bottom line is that we’ve converted our list of matrices
to a list of futures, and the only Akka-like thing in that code snippet is the
construction of the future with a closure that multiplies the group.

Now we need to collect things, which was the same problem we had to
solve with the actor-based approach. We don’t have the sequencing problem
since the list of futures is in the same order as the groups, but how do we
know when all of the futures complete? We’re not going to go into any detail
about what you’ll see because we’re not ready for it, but the simplicity of it
should get you thinking in the right mode.

val results = Future.sequence(futures)

// results is now a Future whose value is the list of resulting group

// multiplications.

val finalResult = ... multiply the last list of matrices together ...

Again, we’ve left some details out, but that’s the bulk of it. Not bad for
half a dozen lines of code, eh?

Futures compose, actors don’t

Actors are great at many things, as we’ve seen, and what we’ve seen is
merely a glimpse into their potential. But one of the things that actors don’t
do well is compose.

This is rather significant, and if you’re a devotee of functional program-
ming, or you’ve worked with OO patterns such as the Decorator7 or Chain
of Responsibility,8 then you understand that significance.9 Functional com-
position, in particular, gives us a level of expressiveness that brings a large
amount of power and flexibility to our daily coding. What if we could bring
that level of expressiveness to our daily coding while at the same time mixing
in concurrency? If the picture of a Tyrannosaurus Rex slam-dunking a bas-
ketball during the final moments of an inter-galactic game of hoops against

7Wikipedia, s.v. "Decorator pattern," accessed Feb 15, 2013, http://en.wikipedia.
org/wiki/Decorator_pattern

8Wikipedia, s.v. "Chain-of-responsibility pattern," accessed Feb 15, 2013, http://en.
wikipedia.org/wiki/Chain-of-responsibility_pattern

9I do apologize for lumping the OO composition in the same league as functional com-
position. While I’m quite aware that they don’t belong together, for the sake of establishing
familiarity I hope you’ll forgive me.

Buy the Book · Discuss

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.2 Chapter 4 · Akka Does Concurrency 24

the backdrop of 1.5 billion simultaneous supernovas just popped into your
head, then you’re getting the idea.

Akka’s futures implementation allows us to set up sequential pipelines of
code that run asynchronously to other pipelines, but also allows us to create
an awesome interplay of parallel and sequential pipelines that run together,
are still very easy to reason about, are concise, and still very functional.

Futures work with actors

Futures are designed to work with actors. The converse isn’t really true, but
that’s simply because there’s no reason for it to be. A long time ago, Akka
had a whole bunch of ways to send a message to an actor. The actor itself
had three methods declared on it: !, !!, and !!!. No, that’s not a stutter. The
different methods signified that the call could be non-blocking, blocking, or
future-based, respectively. This was a decent model for learning how to write
the API, and the Akka team learned a lot from it; they learned that it wasn’t
great. Since then things have been changed, and only the non-blocking ver-
sion is used. The actor itself doesn’t know anything about futures.

The actor and the future bind together using an external pattern and the
future is the one that understands what an actor is (for all intents and pur-
poses). It’s really as simple as Figure 4.17.

Future Actor

"Request"
Message

"Response"
Message

Figure 4.17 · Non-blocking interplay between actors and futures.

One of the many things that this allows is the continuation of the pipelin-

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.3 Chapter 4 · Akka Does Concurrency 25

ing concept. A future can be used to coordinate responses, and then pipe
that response message to another actor instance. And of course all of the
usual transformations you’d like to apply to the resulting message can be ap-
plied before piping it to that actor. The amount of flexibility provided by the
future-to-actor relationship creates a partnership in the Akka toolkit that is
greater than the sum of its parts.

Thinking in the future

As with everything else in Akka, using futures isn’t just about tossing another
tool in the chest, it’s about allowing you to think about your code differently.
We don’t need to worry about “running this in parallel” or “waiting for that
to complete” or “putting that other thing on a thread.” We don’t need to
worry about building out the future by hand (i.e., by creating work to go on
threads, or any of that nonsense). We simply construct our algorithms and
let the “future” happen for itself.

For example, one thing we might do in our day-to-day work may be to
create a couple of queues for different threads to use for communication.
One side may pull work out from their queue while the other side polls,
or otherwise waits, on their own queue for results. With futures, we don’t
need to think in that manner anymore. We would create a future to do the
work, and then compose another future on top of it to process the results.
Everything can be done from the call site directly and we don’t concern
ourselves with queues, messages, protocols, or even threads. The future just
unfolds as we’ve defined, without our having to construct any scaffolding to
realize that future.

4.3 The other stuff

There are many other tools in the Akka tool chest but most of them dovetail
with either the actor or the future, so you’ve been introduced to the most
important concepts you need in order to understand the rest.

So what’s the rest?

The EventBus

The EventBus is a nifty little publish/subscribe abstraction that evolved out
of an internal Akka implementation the team thought the world might just

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.3 Chapter 4 · Akka Does Concurrency 26

make some decent use out of. You’re going to find out that they were right.
As we work with messages and events, the idea of distributing certain

types of event classes to various types of endpoints just naturally becomes
desirable. This happens on a micro level all the way up to a macro level.
You might want to have your actor send certain messages to a few friends
that have an interest in what it has to say, or you might want to broadcast a
small amount of events across your entire super-computing cluster of actors
that spans the entire Northern Hemisphere.

The scheduler

Concurrent programming, especially coupled with the concepts of events,
has always needed timed or future-based events. Akka provides you with a
scheduler that executes functions at timed intervals or single operations at
some point in the future. It even provides a special construct for sending
messages to specific actors in the future.

Not much is alien to us in the world of the scheduler, so you should be
pretty familiar with the concept. We’ll see and use it extensively, so if you’re
not familiar with it now, you will be.

Dataflow concurrency

Dataflow concurrency builds on futures and allows you to look at your ap-
plication’s concurrency from the point of view of the data it uses.

Instead of creating your application as a set of operations that happen
in parallel, you can think of it more as algorithms that operate on data. At
some point, a piece of data acquires a value, which allows other parts of the
application that are waiting on that data to move forward. It operates more
like an application that’s using locks and condition variables than one that’s
using futures, except that it’s much more deterministic and it doesn’t block
threads. Figure 4.18 shows the difference.

With futures, our goal is to run functions concurrently with other func-
tions and rendezvous on the results of those functions if we need to. When
we employ dataflow, we’re getting concurrency more intrusively than that.
Pieces of our functions run in parallel with pieces of other functions and
they rendezvous on any shared data on which they might be working.

“So, they’re sharing mutable data? Isn’t that a bad thing?” Well, it’s not
actually mutable in the traditional sense, so the sharing isn’t quite the same

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.3 Chapter 4 · Akka Does Concurrency 27

Future 1

Future 2a

Future 3

(and so on…)

Algorithm 1

Algorithm 2

Algorithm 5

Algorithm 3

Algorithm 6

Waiting on X

Populate X

Populate A
Waiting on A

Waiting on Z

Populate Z

Waiting on H

Populate H

Populate M

Waiting on M

Future 2b

Futures Dataflow

Figure 4.18 · Dataflow provides a granular imperative feel to concurrency.

as we’re used to in shared-state concurrency. These aren’t variables but are
values and thus immutable. The only difference between dataflow values
and standard values is that dataflow values exist in a future context, whereas
standard (non-lazy) values are, effectively, set at the time of access.

“But those (hidden) locks and condition variables are a bad thing, right?”
They would be if the data were more promiscuous than it is, but it isn’t.

We’ll be getting into dataflow concurrency later, but any notions you
might have about it bringing back the paradigm of shared-state concurrency
that we’re (somewhat) trying to leave behind shouldn’t bother you. The
nice thing about dataflow concurrency is that, while things could go horribly
wrong (e.g., you could get a deadlock), they’re guaranteed to go wrong all
the time. So you’re not stuck looking for Heisenbugs in production because
the first time you run the code, it’s going to go bad on you.

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.3 Chapter 4 · Akka Does Concurrency 28

Message routing

Passing messages to untyped endpoints provides you with a ton of flexibility,
and one of those points of flexibility is embodied in the routing feature of
Akka. You can send messages anywhere you’d like, of course, but what
good is that? Well, if you think back to Figures 4.2, 4.3, and 4.4 you might
recall that sending the same message to multiple endpoints can get us greater
levels of concurrency, and Figure 4.5 tells us that we can use routing to get
us some safety.

Akka provides routing right down to the configuration level of your ap-
plication. We can use routing to make our applications faster, more scalable,
more fault tolerant, and a lot more flexible. The fact that actors can only do
one thing at a time will never be a problem for us.

Agents

Agents are inspired by a like-named feature in Clojure10 and might look a bit
like the atomic classes that are part of the java.util.concurrent.atomic
package, but they’re much more than that. Agents are effectively actors and
thus provide the same single-threaded guarantees that actors provide, but
without the need to send messages to them in order to obtain their values.

You can use agents to provide deterministic locations in memory that are
guaranteed to be safe places to store and read data that can change across
entities. Agents can be waited on, while other entities play with them, and
can also participate in transactions. This makes them much more interesting
than the atomic family of classes from java.util.concurrent.atomic.

And others. . .

You’ve become acquainted with the core philosophies and classes that Akka
provides. As you’ll see as you continue to read, Akka provides more tools
that we can use, including non-blocking IO, interaction with Akka deploy-
ments on remote hosts, distributed transactions, finite-state-machines, fault-
tolerance, performance tuning, and others.

10http://clojure.org/

Buy the Book · Discuss

http://clojure.org/
http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

Section 4.4 Chapter 4 · Akka Does Concurrency 29

4.4 You grabbed the right toolkit

In summary, welcome aboard! You’ve just received a whirlwind tour of the
high points of Akka and should have some clue as to why it will be the
awesome toolkit that you’ve heard about. When it comes to building highly
concurrent and fault-tolerant applications on the JVM, Akka is a solid choice.

As we progress, you’ll learn how to apply the tools we’ve already dis-
cussed to your application design and development. You’ll also start seeing
a lot more code than we’ve seen thus far that will help establish a set of
patterns for coding in Akka. Later on, we’ll establish a set of anti-patterns,
because there certainly are a fair number of those. Like any decent power
tool, if you point it straight at your eye and then run forward, bad things will
happen. There are great ways to use Akka and there are also the power-tool-
to-the-eye ways, and we’re going to favour the former.

You’ve learned a ton so far, and you should feel pretty awesome about
that, but before you run out into the street naked declaring your superiority
over the mere machine that you sit in front of, let’s cover some more of the
nuts and bolts.

OK, take a deep breath and a stretch and let’s dive in!

Buy the Book · Discuss

http://www.artima.com/shop/akka_concurrency
http://www.artima.com/forums/forum.jsp?forum=289

	Akka Does Concurrency
	The actor
	The future
	The other stuff
	You grabbed the right toolkit

