
ScalaCheck: The Definitive Guide
PrePrint™ Edition

Excerpt

artima
ARTIMA PRESS

MOUNTAIN VIEW, CALIFORNIA

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Excerpt from ScalaCheck: The Definitive Guide

Chapter 2

ScalaCheck vs. JUnit: A Complete
Example

Now that you have a theoretical introduction to ScalaCheck concepts, let’s
explore a practical example. This chapter presents a small Java library that
we’ll test with JUnit and ScalaCheck. Although I won’t explain everything
in detail, you should get a rough understanding of the tasks involved when
using ScalaCheck. By direct comparisons to JUnit, you will develop an un-
derstanding of the differences and similarities.

Don’t worry if you get a little confused over the ScalaCheck syntax in
this chapter, since I won’t be going into much detail. Just try to visualize an
overall picture of how ScalaCheck compares to traditional unit testing. The
next chapter describes more closely how the different parts of ScalaCheck
work together and what possibilities you have when you’re designing your
properties.

The class under test

The code we will unit test is a small library of string handling routines, writ-
ten in Java. The complete source code is given in Listing 2.1.

Using JUnit

We will start off by writing and running JUnit tests for the library. I’ll be
using JUnit 4 in my examples.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 3

import java.util.StringTokenizer;

public class StringUtils {

public static String truncate(String s, int n) {

if(s.length() <= n) return s;

else return s.substring(0, n) + "...";

}

public static String[] tokenize(

String s, char delim

) {

String delimStr = new Character(delim).toString();

StringTokenizer st = new StringTokenizer(

s, delimStr);

String[] tokens = new String[st.countTokens()];

int i = 0;

while(st.hasMoreTokens()) {

tokens[i] = st.nextToken();

i++;

}

return tokens;

}

public static boolean contains(

String s, String subString

) {

return s.indexOf(subString) != -1;

}

}

Listing 2.1 · StringUtils.java: the class under test.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 4

We define a class that contains all the unit tests for our library. Look at
the implementation below:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.junit.runners.JUnit4;

import static org.junit.Assert.assertEquals;

import static org.junit.Assert.assertTrue;

import static org.junit.Assert.assertFalse;

@RunWith(JUnit4.class)

public class StringUtilsTest {

@Test public void testTruncateShortString() {

String s = StringUtils.truncate("abc", 5);

assertEquals("abc", s);

}

@Test public void testTruncateLongString() {

String s = StringUtils.truncate("Hello World", 8);

assertEquals("Hello Wo...", s);

}

@Test public void testTokenize() {

String[] tokens = StringUtils.tokenize(

"foo;bar;42", ';');

String[] expected = { "foo", "bar", "42" };

assertTrue(java.util.Arrays.equals(tokens, expected));

}

@Test public void testTokenizeSingle() {

String[] tokens = StringUtils.tokenize(

"Hello World", ',');

String[] expected = { "Hello World" };

assertTrue(java.util.Arrays.equals(tokens, expected));

}

@Test public void testContainsTrue() {

assertTrue(StringUtils.contains("abc", "bc"));

}

@Test public void testContainsFalse() {

assertFalse(StringUtils.contains("abc", "42"));

}

}

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 5

As you can see, I’ve tried to include different kinds of test cases for each
unit test. Let’s now see whether the library passes the tests. We compile the
library and its tests, and then use the console test runner in JUnit to run the
tests.

$ javac -cp junit-4.11.jar \

StringUtils.java StringUtilsTest.java

$ java -cp .:junit-4.11.jar:hamcrest-core-1.3.jar \

org.junit.runner.JUnitCore StringUtilsTest

JUnit version 4.11

......

Time: 0.006

OK (6 tests)

Great! All six tests passed, which shows that our library behaved cor-
rectly. Now let’s turn to ScalaCheck and look at how to define equivalent
properties in it.

Using ScalaCheck

In ScalaCheck, you define properties instead of tests. To define a set of prop-
erties for our library under test, we extend the org.scalacheck.Properties
class, which could be seen as corresponding to the TestCase class in JUnit.
Consider the property definitions for our small string utility library in List-
ing 2.2.

The Prop.forAll method is a common way of creating properties in
ScalaCheck. There are also other ways, which we’ll describe in more detail
in later chapters. The forAll method takes an anonymous function as its
parameter, and that function in turn takes parameters that are used to express
a boolean condition. Basically, the forAll method is equivalent to what
in logic is called a universal quantifier. When ScalaCheck tests a property
created with the forAll method, it tries to falsify it by assigning different
values to the parameters of the provided function, and evaluating the boolean
result. If it can’t locate a set of arguments that makes the property false,
then ScalaCheck will regard the property as passed. This testing process is
described in detail in Chapter 4.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 6

import org.scalacheck.Properties

import org.scalacheck.Prop

import org.scalacheck.Gen.{listOf, alphaStr, numChar}

object StringUtilsProps extends

Properties("StringUtils")

{

property("truncate") =

Prop.forAll { (s: String, n: Int) =>

val t = StringUtils.truncate(s, n)

(s.length <= n && t == s) ||

(s.length > n && t == s.take(n)+"...")

}

property("tokenize") =

Prop.forAll(listOf(alphaStr), numChar) {

(ts, d) =>

val str = ts.mkString(d.toString)

StringUtils.tokenize(str, d).toList == ts

}

property("contains") = Prop.forAll {

(s1: String, s2: String, s3: String) =>

StringUtils.contains(s1+s2+s3, s2)

}

}

Listing 2.2 · ScalaCheck properties for StringUtils.

As you can see, the types of parameters vary. In the truncate property,
we declare one string parameter s and one integer parameter n. That means
that the property should hold for all possible pairs of strings and integers.

The second property, describing tokenize, differs a bit from what you
have seen before. Instead of specifying the types of parameters, we tell
ScalaCheck explicitly which data generators to use. In this case, we use
Gen.listOf in combination with Gen.alphaStr to generate lists of alpha-
only strings, and Gen.numChar to generate digit characters. We still define
the property as a function literal, but now we don’t need to specify the types
of its parameters since they are given by the explicit generators.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 7

Which types are available for use in a forAll property? ScalaCheck has
built-in support for common Java and Scala types, so you can use ordinary
types like integers, strings, dates, lists, arrays, and so on. However, you can
also add support for any custom data type, by letting ScalaCheck know how
to generate your type. I’ll describe how this is done in Chapter 3.

Just as in JUnit, there’s a console-based test runner in ScalaCheck:

$ javac StringUtils.java

$ scalac -cp .:scalacheck.jar StringUtilProps.scala

$ scala -cp .:scalacheck.jar StringUtilProps

! StringUtils.truncate: Exception raised on property

evaluation.

> ARG_0: ""

> ARG_1: -1

> ARG_1_ORIGINAL: -1110151355

> Exception: java.lang.StringIndexOutOfBoundsException:

String index out of range: -1

java.lang.String.substring(String.java:1911)

StringUtils.truncate(StringUtils.java:7)

StringUtilsProps$$anonfun$1.apply(StringUtilsProps.scala:9)

StringUtilsProps$$anonfun$1.apply(StringUtilsProps.scala:8)

org.scalacheck.Prop$$anonfun$forAll$10$$anonfun$apply$25

.apply(Prop.scala:759)

! StringUtils.tokenize: Falsified after 5 passed tests.

> ARG_0: List("")

> ARG_0_ORIGINAL: List("", "yHa", "vlez", "Oyex", "lhz")

> ARG_1: 2

+ StringUtils.contains: OK, passed 100 tests.

What happened here? It certainly doesn’t look as if the test passed, does
it? Let’s try to break things up a bit first. ScalaCheck tested three properties:
StringUtils.truncate, StringUtils.tokenize, and StringUtils.contains.
For each property, ScalaCheck prints the test results, starting with an excla-
mation mark for failed properties and a plus sign for properties that passed
the tests. Hence, we can conclude that the first two properties failed, and
the third one succeeded. Let’s investigate the failures in ScalaCheck more
closely.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 8

For the StringUtils.truncate property, we encountered a StringIndexOutOfBoundsException
during testing. The arguments that caused the exception were an empty string
and the integer value -1. These arguments correspond to the parameters s
and n in the truncate property definition in StringUtilsProps.scala. If
we look at the library code, the failure is not hard to understand. The given
arguments will lead to an invocation of "".substring(0, -1), and the API
documentation for the String class clearly states that such indices will cause
an exception to be thrown.

There are several ways to make the truncate property pass, and we must
now decide exactly how we want the truncate method to behave. Here is a
list of alternatives:

1. Let the truncate method throw an exception for invalid input, and
clearly specify the kind of exception it will throw. Either we can leave
the method as it is, throwing the same exception as String.substring
does, or we can throw another type of exception. In any case, we’ll
have to do something about the property, since we want it to verify
that the correct exception is thrown.

2. Let the truncate method be completely unspecified for invalid inputs.
We simply state a precondition for the method and if the caller breaks
that condition, there’s no guarantee for how truncate will behave.
This can be a reasonable approach in some situations, but we still need
to make our property respect the precondition.

3. Handle invalid inputs in another reasonable way. For example, if a
negative integer is used in a call to truncate, then it could make sense
to return an empty string. This approach requires us to change both
the implementation (the truncate method) and the specification (the
property).

Notice how ScalaCheck forced us to think about the general behavior of
truncate and not just about a few concrete test cases. If you are experienced
in writing unit tests, you might spot the exception case above and write tests
covering it. However, ScalaCheck seemed to spot it for free.

Now, for each possible alternative in the list above, let’s see how we
would change code.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 9

1. Throw the exception We let the implementation remain the same,
and update the property to respect the fact that an exception should be
thrown for invalid input:

property("truncate") =

Prop.forAll { (s: String, n: Int) =>

lazy val t = StringUtils.truncate(s, n)

if (n < 0)

Prop.throws(

classOf[StringIndexOutOfBoundsException]

) { t }

else

(s.length <= n && t == s) ||

(s.length > n && t == s.take(n)+"...")

}

The new version of the property uses a handy feature of the Scala lan-
guage called lazy evaluation. By marking the variable t with the key-
word lazy, the expression to the right of the assignment operator is not
evaluated until the value of t is used. Therefore, the exception is not
thrown during assignment. We then use ScalaCheck’s Props.throws
operator, which makes sure that the property passes only if the correct
type of exception is thrown. The classOf operator is built into Scala
and used for retrieving the java.lang.Class instance for a particular
type.

2. Remain unspecified The precondition for the truncate method is
simply that the integer parameter must be greater than or equal to
zero. We state this in the property by using ScalaCheck’s implica-
tion operator, ==>. To get access to this operator, we need to import
Prop.BooleanOperators that makes some boolean property opera-
tors implicitly available in the importing scope. By specifying a pre-
condition in this way, we keep ScalaCheck from testing the property
with input values that don’t fulfill the condition.

import Prop.BooleanOperators

property("truncate") =

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 10

Prop.forAll { (s: String, n: Int) =>

(n >= 0) ==> {

val t = StringUtils.truncate(s, n)

(s.length <= n && t == s) ||

(s.length > n && t == s.take(n)+"...")

}

}

Preconditions in ScalaCheck properties are discussed in Chapter ??.

3. Handle it In the third alternative, we wanted our method to return an
empty string when confronted with invalid inputs. This is a simple
change in the implementation:

public static String truncate(String s, int n) {

if(n < 0) return "";

else if(s.length() <= n) return s;

else return s.substring(0, n) + "...";

}

The property is updated to cover the empty string case:

property("truncate") =

Prop.forAll { (s: String, n: Int) =>

val t = StringUtils.truncate(s, n)

if(n < 0) t == ""

else

(s.length <= n && t == s) ||

(s.length > n && t == s.take(n)+"...")

}

Each solution above makes the truncate property pass; it’s up to the
implementer to decide exactly how the method should behave. If we run the
tests again, after having picked one of the alternatives, we get the following
output:

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 11

$ scala -cp .:scalacheck.jar StringUtilProps

+ StringUtils.truncate: OK, passed 100 tests.

! StringUtils.tokenize: Falsified after 3 passed tests.

> ARG_0: List("")

> ARG_0_ORIGINAL: List("", "")

> ARG_1: 9

+ StringUtils.contains: OK, passed 100 tests.

Now only the tokenize property fails. We can see that the property
was given a single string "" (an empty string) and the delimiter token 2.
However, to debug the property and implementation, it would be nice to see
more information about the property evaluation. For example, it would be
beneficial if we could somehow see the value produced by tokenize when
given the generated input. In fact, there are several ways to collect data from
the property evaluation, which I’ll describe in Chapter 5. In this specific
case, the simplest solution is to use a special equality operator of ScalaCheck
instead of the ordinary one. We import Prop.AnyOperators that makes a
number of property operators implicitly available, and then simply change
== to ?= in the property definition:

property("tokenize") = {

import Prop.AnyOperators

Prop.forAll(listOf(alphaStr), numChar) { (ts, d) =>

val str = ts.mkString(d.toString)

StringUtils.tokenize(str, d).toList ?= ts

}

}

Let’s see what ScalaCheck tells us now:

$ scala -cp .:scalacheck.jar StringUtilProps

+ StringUtils.truncate: OK, passed 100 tests.

! StringUtils.tokenize: Falsified after 3 passed tests.

> Labels of failing property:

Expected List("") but got List()

> ARG_0: List("")

> ARG_0_ORIGINAL: List("", "E", "zd")

> ARG_1: 4

+ StringUtils.contains: OK, passed 100 tests.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 12

Because ScalaCheck generates random input, the exact results of each
run are not the same. Don’t worry if the output you see is different.

ScalaCheck now reports a label for the failing property. Here, we can see
exactly what went wrong in the comparison at the end of our property defi-
nition. Apparently, tokenize doesn’t regard that empty string in the middle
as a token. Actually, this is a feature of the standard Java StringTokenizer
class. If there are no characters between two delimiters, StringTokenizer
doesn’t regard that as an empty string token, but instead as no token. Whether
this is a bug or not is completely up to the person who is defining the speci-
fication. In this case, I would probably change the implementation to match
the property, but you could just as well adjust the specification.

Conclusion

I won’t take this example further here. After this quick overview, the upcom-
ing chapters will describe ScalaCheck’s features in greater detail. However,
let me summarize what I wanted to show with this exercise.

First, while there are many differences between ScalaCheck and JUnit,
they are quite similar on the surface. Instead of writing JUnit tests, you
write ScalaCheck properties. Often you can replace several tests with one
property. You manage and test your property collections in much the same
way as your JUnit test suites. In this chapter, I only showed the console test
runner of ScalaCheck, but other ways of running tests are shown in Chapter
4.

The differences between JUnit and ScalaCheck lie in the way you think
about your code and its specification. In JUnit, you throw together several
small usage examples for your code units, and verify that those particular
samples work. You describe your code’s functionality by giving some usage
scenarios.

In property-based testing, you don’t reason about usage examples. In-
stead, you try to capture the desired code behavior in a general sense, by ab-
stracting over input parameters and states. The properties in ScalaCheck are
one level above the tests of JUnit, so to speak. By feeding abstract properties
into ScalaCheck, many concrete tests will be generated behind the scenes.
Each automatically generated test is comparable to the tests that you write
manually in JUnit.

What does this buy us, then? In Chapter 1, I tried to reason about the

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

Chapter 2 · ScalaCheck vs. JUnit: A Complete Example 13

advantages of property-based testing theoretically, and hopefully this chap-
ter has demonstrated some of it practically. What happened when we ran our
JUnit tests in the beginning of this chapter? They all passed. And what hap-
pened when we tested the ScalaCheck properties? They didn’t pass. Instead,
we detected several inconsistencies in our code. We were forced to think
about our implementation and its specification, and difficult corner cases
surfaced immediately. This is the goal of property-based testing; its abstract
nature makes it harder to leave out parts and create holes in the specification.

It should be said that all the inconsistencies we found with ScalaCheck
could have been found with JUnit as well, if we had picked more tests, with
greater care. You could probably come a long way with JUnit tests just by ap-
plying a more specification-centered mindset. There’s even a feature in JU-
nit 4 called theories that resembles property-based testing by parameterizing
the test cases, but there’s no support for automatically producing randomized
values in the way ScalaCheck does. There’s also nothing like ScalaCheck’s
rich API for defining custom test case generators and properties.

Lastly, as I’ve mentioned before, there is no need for an all-or-nothing
approach when it comes to property-based testing. Cherry-picking is always
preferred. Sometimes it feels right using a property-based method; in other
situations, it feels awkward. Don’t be afraid to mix techniques, even in the
same project. With ScalaCheck, you can write simple tests that just cover
one particular case, as well as complete properties that specifies the behavior
of a method completely.

I hope that you are now intrigued by ScalaCheck’s possibilities. The next
chapter describes the fundamental parts of ScalaCheck and their interactions.

Buy the Book · Discuss

http://www.artima.com/shop/scalacheck
http://www.artima.com/forums/forum.jsp?forum=290

	ScalaCheck vs. JUnit: A Complete Example
	The class under test
	Using JUnit
	Using ScalaCheck
	Conclusion

