The Artima Developer Community
Sponsored Link

Heron-Centric: Ruminations of a Language Designer
Storing and Tracking Matrix Rows and Columns at Compile-Time
by Christopher Diggins
May 15, 2005
Here is a method for for representing and computing rows and columns at compile-time, and to do matrix multiplication accordingly. (trickier than it might sound)


Disclaimer: I had horrible food poisoning recently so I can't be held responsible for the quality of this work ... good or bad ;-)

#include <iostream>
#include <numeric>
#include <valarray>
#include <cassert>

template<class Value_T, unsigned int Size_N, unsigned int Stride_N>
class Slice
  // constructor
  Slice(Value_T* x) : p(x) { }
  // typedef
  typedef Value_T value_type;
  // only a forward iterator is provided,
  // others are left as an exercise for the reader
  struct Slice_forward_iter {
    Slice_forward_iter(Value_T* x) : p(x) { }
    Value_T& operator*() { return *p; }
    const Value_T& operator*() const { return *p; }
    Value_T& operator++() { Value_T* tmp = p; p += Stride_N; return *tmp; }
    Value_T& operator++(int) { return *(p+=Stride_N); }
    bool operator==(const Slice_forward_iter& x) { return p == x.p; }
    bool operator!=(const Slice_forward_iter& x) { return p != x.p; }
    Value_T* p;
  typedef Slice_forward_iter iterator;
  typedef const Slice_forward_iter const_iterator;
  // public functions
  iterator begin() { return iterator(p); }
  iterator end() { return iterator(p + (Size_N * Stride_N)); }
  value_type& operator[](size_t n) { return *(p + (n * Stride_N)); }
  const value_type& operator[](size_t n) const { return *(p + (n * Stride_N)); }
  static size_t size() { return Size_N; }
  static size_t stride() { return Stride_N; }
  // prevent default construction
  Slice() { };
  Value_T* p;

template<class Value_T, unsigned int Rows_N, unsigned int Cols_N>
class Matrix
  typedef Slice<Value_T, Cols_N, 1> row_type;
  typedef Slice<Value_T, Rows_N, Cols_N> col_type;
  const row_type row(unsigned int n) const {
    assert(n < rows);
    return row_type(data + (n * Cols_N));
  const col_type column(unsigned int n) const {
    assert(n < cols);
    return col_type(data + n);
  row_type operator[](unsigned int n) { return row(n); }
  const row_type operator[](unsigned int n) const { return row(n); }
  const static unsigned int rows = Rows_N;
  const static unsigned int cols = Cols_N;
  typedef Value_T value_type;
  mutable Value_T data[Rows_N * Cols_N];

template<class Matrix1, class Matrix2>
struct MatrixMultiplicationType {
  typedef Matrix<typename Matrix1::value_type, Matrix1::rows, Matrix2::cols> type;

template<class Slice1_T, class Slice2_T>
typename Slice1_T::value_type dot_product(Slice1_T x, Slice2_T y) {
  assert(x.size() == y.size());
  return std::inner_product(x.begin(), x.end(), y.begin(), typename Slice1_T::value_type(0));

template<class Matrix1, class Matrix2>
typename MatrixMultiplicationType<Matrix1, Matrix2>::type
matrix_multiply(const Matrix1& m1, const Matrix2& m2)
  typename MatrixMultiplicationType<Matrix1, Matrix2>::type result;
  assert(Matrix1::cols == Matrix2::rows);
  for (int i=0; i < Matrix1::rows; ++i)
  for (int j=0; j < Matrix2::cols; ++j)
    result[i][j] = dot_product(m1.row(i), m2.column(j));
  return result;

template<typename Matrix_T>
void output_matrix(const Matrix_T& x) {
  for (int i=0; i < x.rows; ++i) {
    for (int j=0; j < x.cols; ++j) {
      std::cout << x[i][j] << ", ";
    std::cout << std::endl;
  std::cout << std::endl;

void test_matrix() {
  Matrix<int, 1, 2> m1;
  m1[0][0] = 2;
  m1[0][1] = 3;
  Matrix<int, 2, 2> m2;
  m2[0][0] = 2;
  m2[0][1] = 0;
  m2[1][0] = 0;
  m2[1][1] = 2;
  Matrix<int, 1, 2> m3 = matrix_multiply(m1, m2);

int main() {
  return 0;

Talk Back!

Have an opinion? Readers have already posted 1 comment about this weblog entry. Why not add yours?

RSS Feed

If you'd like to be notified whenever Christopher Diggins adds a new entry to his weblog, subscribe to his RSS feed.

About the Blogger

Christopher Diggins is a software developer and freelance writer. Christopher loves programming, but is eternally frustrated by the shortcomings of modern programming languages. As would any reasonable person in his shoes, he decided to quit his day job to write his own ( ). Christopher is the co-author of the C++ Cookbook from O'Reilly. Christopher can be reached through his home page at

This weblog entry is Copyright © 2005 Christopher Diggins. All rights reserved.

Sponsored Links


Copyright © 1996-2018 Artima, Inc. All Rights Reserved. - Privacy Policy - Terms of Use